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Abstract 
 
The technology of nanofluid in the blood flow has attracted researchers to further study theoretically 
and experimentally due to its importance in treating the tumour and delivering the drugs effectively. 
Due to the lack of analytical study on nano-bloodfluid, this present paper aims to obtain an 
analytical solution of the Casson blood flow with gold nanoparticles in the cylinder with the free 
convection flow and slip velocity effect. The dimensionless governing equations are modelled with 
the Caputo-Fabrizio fractional derivative approach. Next, the joint methods of the Laplace 
transform and finite Hankel transform are used to obtain the analytical solution. The velocity profile 
increased as a fractional parameter, slip velocity parameter, nanoparticles volume fraction 
parameter and Grashof number are increased. Meanwhile, it decreased as the Casson parameter 
and Prandtl number increased. The temperature profile increased as the nanoparticle volume 
fraction parameter increased. However, it decreased as the Prandtl number increased. The 
obtained results are beneficial for the accuracy checking of the numerical methods. Besides, these 
results are significant to study the human blood flow behaviour with nanoparticles that help 
diagnose and treat the tumour cell. 
 
Keywords     Casson blood flow, gold nanoparticles, Caputo-Fabrizio, slip velocity, finite Hankel 
transform 

 

© 2022 Penerbit UTM Press. All rights reserved 
 

  
 
1.0  INTRODUCTION 
 
Free convection flow is one of the heat transfer processes that occur naturally between surface and adjacent fluid. It happens 
due to the differences in temperature and density in the fluid. It attracts many researchers to study free convection flow in the 
cylinder due to its applications in engineering such as oil flow in the pipeline and biomedical fields such as human blood flow 
rates in the blood vessels. Additionally, the existence of the heat transfer process improves the homogeneity of the human blood 
concentration which controls the blood velocity in the drug delivery system [1]. Motivated by its wide applications, Khan et al., 
[2] analytically investigated the Newtonian fluid behaviour with the free convection flow in an oscillating cylinder. Similarly, Javaid 
et al., [3] analytically studied the problem of free convection flow in an oscillating cylinder as Khan et al., [2] did, but with a 
different type of fluid, second-grade fluid. Moreover, fluid categories are also affecting fluid behaviour since the fluid is a heat 
carrier. In these studies, one of the famous non-Newtonian fluids, which is the Casson fluid model will be investigated. It behaves 
like an elastic solid if the condition of applied shear stress is greater than the yield stress, but it initiates the flow if the condition 
is inverse. Thus, based on its unique behaviour, it can imitate human blood flow in the small blood vessels [4]. Kumar and Rizvi 
[5] investigated Casson fluid flow in the moving cylinder with the effects of a free convective, chemical reaction and magnetic 
field. They numerically solved by using the Crank-Nicolson implicit finite difference method. They revealed that as the Casson 
parameter increased, the plasticity of the fluid decreased, hence, enhancing the fluid velocity.  

Currently, many researchers gain interest in the Casson fluid model with the fractional derivative approach such as 
Caputo, Riemann-Liouville, Caputo-Fabrizio and Atangana-Baleanu. It is important for applications that are involved with 
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physical memory such as fluid mechanics applications. It discusses the n-notation of the derivative if it is a fractional or complex 
number [6]. Inspired by its importance, Ali et al., [7] was among the earliest research group that analytically solved the Casson 
fluid flow in the fixed cylinder with Caputo fractional derivative approach. However, some fractional derivative models have 
limitations and are difficult to model complex physical problems due to the power law kernel. Hence, Caputo-Fabrizio fractional 
derivative model is one of the most suitable approaches to modeling the fluid flow problem since it has a non-singular kernel 
operator [8]. Then, Ali et al., [9]–[11] encountered a similar problem as Ali et al., [7] with the additional effect of the free convection 
flow in the cylinder. They solved the problem with the different boundary conditions such as fixed cylinder [9], moving cylinder 
[10] and oscillating cylinder [11]. They model the governing equations with the Caputo-Fabrizio fractional derivative approach. 
Later, Maiti et al., [12]–[14] extended a similar problem with the additional effects of radiation and chemical reaction. All of them 
analytically solved the problems by using the joint methods Laplace transform and finite Hankel transform. 

On the other hand, nanofluid is one of the innovative ideas to improve the heat transfer process of the fluid. Nanofluid is 
a fluid that consists of metallic nanometer-sized particles dispersed in the low thermal conductivity base fluid. It has been widely 
used in medical applications such as drug delivery and tumour treatment. Encouraged by its importance in improving fluid 
thermal conductivity [1], Ahmad et al., [15] obtained an analytical solution for fractional Casson clay nanofluid with natural 
convection flow on the moving plate. They applied the Constant Caputo fractional derivative approach and solved the problem 
by using Laplace transform. Then, Sobamowo [16] extended a similar problem as Ahmad et al., [15] numerically with additional 
effects of porosity, magnetic field, radiation and chemical reaction. Besides, Hamarsheh et al., [17] investigated numerically free 
convection flow of carbon nanotubes dispersed in the Casson fluid past through a fixed circular cylinder. In this study, gold (Au) 
is considered a nanoparticle (NPs), which is dispersed uniformly in the human blood since it has good biocompatibility [18]. 
Imtiaz et al.,[19] explored the effect of the gold nanoparticles (Au NPs) dispersed in the human blood flow in the fixed cylinder 
with free convective heat transfer. They analytically solved by using Laplace and finite Hankel transform techniques together 
with the Caputo-Fabrizio fractional derivative approach. Nevertheless, none of them considered the slip velocity effect at the 
boundary. 

By considering the slip velocity effect at the boundary, the problems can be modelled close to real-life applications such 
as blood flow in the arteries. It also plays a vital role in the variations of fluid velocity. It can be defined as a velocity gradient 
that occurs between two different mediums; a solid boundary and adjacent fluid flow on it [20]. Padma et al., [21], [22] find out 
the fluid velocity with the presence of slip velocity is higher than the no-slip velocity at the boundary. They obtained an analytical 
solution for the Jeffrey fluid flow in the cylinder by using the combined methods of the Laplace transform and finite Hankel 
transform. Then, Afify [23] numerically discussed the effect of the slip boundary on the Casson nanofluid past through a sheet. 
Later, mathematical modelling has been numerically developed for the Casson nanofluid flow outside the stretching cylinder by 
Usman et al., [24] and Tulu and Ibrahim[25]. Furthermore, Idowu et al., [26] explored numerically the influence of slip velocity 
on the Casson nanofluid flow between two cylinders. However, their studies did not include the fractional derivative approach. 

To the best of our knowledges, the impact of the slip velocity at the boundary together with the fractional derivative 
approach of Casson nanofluid in the cylindrical domain has not been investigated yet by the researchers. In this study, gold 
solid particles are considered nanoparticles and human blood is considered a base fluid with the Casson nanofluid model. It is 
a lack of clinical experiment research in the case of Au NPs since it consumes time and cost. Therefore, many researchers 
studied theoretically by using analytical and numerical methods. However, most of the researchers obtained results analytically 
by considering the no-slip velocity effect and fractional derivative approach.  Thus, the present study aims to obtain and analyze 
the analytical solution of the unsteady free convection flow of Casson nanofluid with the Caputo-Fabrizio fractional derivative 
approach in the slip velocity cylinder. The momentum and energy governing equations are expressed in the Caputo-Fabrizio 
fractional derivative model. The analytical solutions for the velocity and temperature profiles are obtained by using the combined 
methods of the Laplace transform and finite Hankel transform. Then, the obtained analytical solution is plotted and analyzed 
graphically with the related parameters by using Maple software. The obtained results on the human blood behaviour either 
blood velocity or blood temperature with the various related parameters such as Au NPs concentration are beneficial for the 
study of a blood disease problem. For example, the obtained results of the human blood rates influence the speed of the Au 
NPs to be loaded to the desired tumour/cancerous tissues and maximize the damage of the cancerous cell. 

 
2.0  MATHEMATICAL FORMULATION 
 
Assume that an unsteady free convection flow of human blood dispersed with gold nanoparticles passed through an infinite 
vertical cylinder that reflects small blood vessels. Consider the radius of the cylinder as r0, the axis along the horizontal direction 
is the z-axis and the r-axis which refers to the radial direction is taken normal to the z-axis. In this study, human blood will be 
modelled with the Casson fluid model. The nanofluid flow is driven by the buoyancy force and velocity gradient that occurred at 
the boundary of the cylinder. Initially at t*=0, both nanofluid and cylinder are at rest condition with the ambient temperature Tꝏ. 
Then, nanofluid begins to flow due to the occurrence of slip velocity us at the boundary of the cylinder when t*>0. Simultaneously, 
the cylinder temperature was raised to wall cylinder temperature, Tw and then it is maintained constant. The functions of fluid 
velocity and temperature are in terms of r and t only. Figure 1 shows the diagram to describe and illustrate the physical problems.  
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Figure 1 Physical problem illustration. 
 
Based on Boussinesq’s approximation and the Tiwari and Das nanofluid model, the governing equations of the momentum and 
energy for the present study are given as [19], [27] 
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where u* is the velocity component along the z-axis, 2B c yµβ π τ= is the Casson parameter, g is the gravitational 

acceleration and T* is the temperature of the fluid. Moreover, the thermophysical properties in Casson nanofluids are involved 
with the effective density ρnf, effective dynamic viscosity µnf, thermal expansion coefficient (ρβT)nf, effective heat capacity(ρcp)nf, 
and effective thermal conductivity knf are defined as in equation (5). The effective thermal conductivity of the nanofluid is based 
on the Maxwell model which is only considered the spherical shape of nanoparticles according to Oztop et al. [28] and it is 
suitable for studying heat transfer enhancement by using nanofluids. Moreover, Brinkman highlighted that the viscosity of the 
nanofluid is approximated as the viscosity of a base fluid containing spherical particles [29]. Thus, the model is given as 
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where the subscript symbols f indicates fluid while s indicates solid and ϕ is the nanofluid solid volume fraction. The appropriate 
dimensionless variables are introduced as [11], [21] 
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The dimensionless variables substitute into Equations (1)-(3) to obtain governing equations and conditions in the dimensionless 
form. Besides, nanofluid model parameters are also substituted into the dimensionless governing equations and get   
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together with the related initial and boundary conditions 
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are applied Caputo-Fabrizio fractional derivative approach and obtained as 
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2.1  Problem Solution 
 
The dimensionless forms of the governing equations solve by using the combined methods of the Laplace transform and finite 
Hankel transform. Both methods are very beneficial to obtain analytical solutions since the problems involve the cylindrical 
domain, transient and initial-boundary value problems. 
 
2.2  Calculation of Temperature  
  
Transformed equation (11) together with the associated initial and boundary conditions (9) by using Laplace transform 
technique, which yields 
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( , )r tθ and s is the transformation variable. Later, Laplace’s partial differential equation (12) transforms into the ordinary 
differential equation with respect to the radial coordinate by using finite Hankel transform of zero-order together with the related 
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 where [ ]5 3 4[ ] [ ]a n a n a n=  is the constant parameter. After that, the inverse Laplace transform is applied to the equation (15), 

attaining as 
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Finally, the analytical solution of temperature profiles is obtained by applying the inverse finite Hankel transform to the equation 
(16) and gaining as 
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2.3  Calculation of Velocity 
 
By applying Laplace transform technique to equation (10) together with the related initial and boundary conditions (7), get 
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where ( , )u r s  is the Laplace transform of the function ( , )u r t . Then, apply finite Hankel transform into equation (18) together 
with the boundary condition (19) to obtain an ordinary differential equation (ODE) as 
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Lastly, use inverse finite Hankel transform to obtain the analytical solution of the nanofluid velocity, given as 
 

( ) ( )
( )

[ ]( )

( )
( )

[ ]( )

( )
[ ]

80
0

1 1 7

0 5 83 1 5

3 1 7 3 104
3 2

13 1 5 1 0 5

4

exp
, 2

[ ]

expPr
[ ]2 .

Pr Pr exp [ ]

n
s s

n n n

n

n n n

a n tJ rr
u r t u a u

r J r a n

a M a n tM M
M a n MJ rrM Gr

M M r J r a a n t
a n

β
β β

β

∞

=

∞

=

−
= −

 −−
+ 

 +  − − −
  

∑

∑
   (23) 

3.0  RESULTS AND DISCUSSIONS 

In order to validate the obtained present result, the limiting case of the obtained present result as in equation (23) is compared 
with the previously published result by Khan et al., [2]. Based on the graph observation in Figure 2, both graphs are identical 
which shows they are in mutual agreement. Thus, the obtained analytical solution is accurate.  
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Figure 2  Comparison of velocity profile u(r,t) from equation (23) when β →ꝏ , us=1.0, α=0.999, ϕ =0 with equation (29) when 
ω= 0 by Khan et al. [1]. 

 
In this study, the analytical solutions of nanofluid velocity and temperature in equations (17) and (23) are graphically 

plotted to analyse and understand the nanofluid flow behaviour. It involves important parameters such as Casson parameter β, 
Grashof number Gr, Prandtl number Pr, slip velocity parameter us, fractional parameterα, nanoparticles volume fraction ϕ and 
time parameter t. The influences of the parameters on the nanofluid flow behaviour are displayed in Figures 3-10.  

The effects of the Casson parameter on the fluid velocity are displayed in Figure 3. As we can see, fluid velocity 
decreases as the Casson parameter increases with the presence of slip velocity and no-slip velocity at the wall of the cylinder. 
When the Casson parameter increases, it leads to an increase in fluid viscosity and internal friction. As result, the fluid becomes 
thicker and decrement in fluid velocity.  

Figure 4 presents the influence of the Grashof number on the fluid velocity with the existence of the slip and no-slip 
velocity effect at the boundary. It is found that an increment of the Grashof number leads to an increment in the fluid velocity. 
During free convection flow, the buoyancy force is dominant. Fluid particles near the boundary will circulate due to the density 
difference which results from the temperature gradient. Thus, as the Grashof number increase, buoyancy force will increase 
and enhance the fluid flow movement. 

Meanwhile, fluid velocity and temperature decrease with the increases of the Prandtl number as shown in Figures 5-6. 
As the Prandtl number increases, momentum diffusivity increases. It causes momentum to spread between the particles to 
increase and resist the motion between the fluid particles. Thus, the fluid velocity decrease. Meanwhile, thermal diffusivity is 
inversely related to the Prandtl number. A larger Prandtl number causes fluid to cool down faster. Hence, fluid temperature 
decreases as the Prandtl number increases. 

The impacts of nanoparticle volume fraction on the fluid velocity and temperature are illustrated in Figures 7-8. The 
velocity and temperature of the pure blood without nanoparticles (ϕ=0) are lower than the blood with gold nanoparticles. It shows 
that adding the nanoparticles can enhance the thermal conductivity of the nanofluid. Based on the graph observation also shows 
that increasing the nanoparticles volume fraction, will enhance the blood velocity and temperature. It is due to the natural 
convective heat transfer among the nanoparticles in blood flow increases as the nanoparticle volume fraction increases. Thus, 
it increases the motion of the nanoparticles in the blood flow. Consequently, the velocity and temperature of the nanofluid 
increase.  

Besides, the fractional parameter also affects fluid velocity and temperature as depicted in Figures 9-10. By increasing 
the fractional parameter (0 <α<1), fluid velocity and temperature increase with the presence of slip and no-slip velocity in a large 
time interval (t>2). Conversely, fluid temperature decreases as the fractional parameter increases for a small-time interval 
(t=0.5). The differences occur between small-time and large-time intervals due to the memory effect of the fractional derivative. 
In addition, it is shown that the increment of the fluid with the fractional model is more realistic compared with the classical model 
(α=1).  

Moreover, the slip velocity effect at the boundary also contributes to the increment of the fluid velocity at the wall of the 
cylinder (r=1) as revealed in Figures 3-5,7,9. It is due to the occurrence of velocity gradient between two different mediums, for 
this study involves the fluid flow and wall of the cylinder(solid). Thus, fluid velocity flow near r=1 will be the same as the slip 
velocity occurring at r=1. Besides, fluid velocity increases when approaching the center of the cylinder (r=0) as time increases. 
Furthermore, the slip velocity effect will be considered in this study since it exists in real-life applications such as blood flow in 
the arteries.  
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Figure 3. Fluid velocity u(r,t) with various of Casson 
parameter when α=0.5, Gr=1, Pr=20.3, ϕ=0.2  and t=2. 

Figure 4. Fluid velocity u(r,t) with various of Grashof number 
when α=0.5, β=0.8, Pr=20.3, ϕ=0.2 and t=2. 

  
Figure 5. Fluid velocity u(r,t) with various of Prandtl number 
when α=0.5, Gr=1, β=0.8, ϕ=0.2 and t=2. 
 

Figure 6. Fluid temperature θ(r,t) with various Prandtl 
number when α=0.5, Gr=1 and ϕ=0.2. 
 

  
Figure 7. Fluid velocity u(r,t) with various of nanoparticles 
volume fraction when α=0.5, Gr=1, β=0.8, Pr=20.3 and t=2. 
 

Figure 8. Fluid temperature θ(r,t) with various nanoparticles 
volume fractions when α=0.5, Gr=1 and Pr=20.3. 
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Figure 9. Fluid velocity u(r,t) with various of fractional 
parameter when Gr=1,  β=0.8, Pr=20.3, ϕ=0.2 and t=2. 
 

Figure 10. Fluid temperature θ(r,t) with various of fractional 
parameter when ϕ=0.2, Gr=1, Pr=20.3  
 

4.0  CONCLUSION 
 
In conclusion, the unsteady free convection flow of blood with Au NPs past through a cylinder together with the slip velocity 
effect has been investigated. The governing equations are modelled with the Caputo-Fabrizio fractional derivatives approach. 
Then, the analytical solutions of the velocity and temperature profiles are obtained by using the joint methods of the Laplace 
transform and finite Hankel transform. The findings obtained are as below; 
 

i. The limiting case of the obtained analytical solution is matching the previously published result. Thus, the obtained 
solution is accepted. 

ii. Fluid velocity increases with the presence of us, Gr, ϕ, α and t. 
iii. Decrement of fluid velocity as increases values of β, and Pr.  
iv. Fluid temperature decreases as Pr increases while fluid temperature increases as ϕ and t increase. 
v. The fractional parameter increases lead to an increase in fluid temperature for a larger time interval and vice versa. 
vi. The fractional fluid model is more realistic than the classical fluid model. 
vii. Slip velocity enhances the fluid flow, especially at r=1.  
viii. Au NPs increase human blood flow and thermal conductivity. 

 
The findings are very useful to study the human blood behavior in the small arteries to diagnose and treat any related 

blood diseases and tumors. For example, in a drug delivery system, as fluid temperature increased, the concentration of the 
human blood flow with Au NPs reduced which caused an increment of the human blood flow. Hence, the anticancer drug is 
released faster at the desired cancerous cell. 
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