Immobilization of Tyrosinase and Its Application
DOI:
https://doi.org/10.11113/jomalisc.v2.16Keywords:
Enzyme immobilization, sol-gel, tyrosinase, silica matrixAbstract
Immobilized enzymes are more robust and resistant to environmental changes than free enzymes in solution. More crucially, the immobilized enzyme systems' heterogeneity enables facile recovery of enzymes and products, multiple reuses, continuous enzymatic processes, quick reaction termination, and a more comprehensive range of bioreactor designs. This paper examines recent findings on enzyme immobilization using diverse approaches for various uses. The information gathered from the reactions catalyzed by the encapsulated tyrosinase provided a good view of hetero-biocatalysts in the phenol biosensor industries. This review proposes an effective method for immobilizing tyrosinase biomolecules into a silica aerogel matrix. Silica matrix has been utilized to encapsulate a wide range of biomolecules, mainly in sol-gel composites. We also discovered that silica aerogel synthesized from sol-gel method retains all the immobilized enzyme activity. The use of a silica matrix for enzyme immobilization, in conjunction with a moderate immobilization method, results in the successful retention of enzyme activity. Future studies should explore practical encapsulating approaches and inventively modified supports to enhance the commercialization of immobilized enzymes and offer fresh perspectives to the industrial sector.
References
Novak, Z., Habulin, M., Krmelj, V., Knez, Ž. Silica aerogels as supports for lipase-catalyzed esterifications at sub-and supercritical conditions. The Journal of Supercritical Fluids. 2003; 27(2): 169-178.
Woodley, J. M. New opportunities for biocatalysis: Making pharmaceutical processes greener. Trends In Biotechnology. 2008; 26(6): 321-327.
Gill, I., & Ballesteros, A. Bioencapsulation within synthetic polymers (Part 1): Sol-gel encapsulated biologicals. Trends In Biotechnology. 2000; 18(7): 282-296.
Vidinha, P., Augusto, V., Almeida, M., Fonseca, I., Fidalgo, A., Ilharco, L., Cabral, J.M. & Barreiros, S. Sol-gel encapsulation: An efficient and versatile immobilization technique for cutinase in non-aqueous media. Journal of Biotechnology. 2006; 121(1): 23-33.
Brena, B., González-Pombo, P., Batista-Viera, F. Immobilization of enzymes: A literature survey. Immobilization of Enzymes and Cells. 2013; 15-31.
Seetharam, G. B., Saville, B. A. Degradation of phenol using tyrosinase immobilized on siliceous supports. Water Research. 2003; 37(2): 436-440.
Bergogne, L., Fennouh, S., Guyon, S., Livage, J., Roux, C. Bio-encapsulation within sol-gel glasses. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals. 2000; 354(1): 79-89.
Dumitriu, E., Secundo, F., Patarin, J., Fechete, I. Preparation and properties of lipase immobilized on MCM-36 support. Journal of Molecular Catalysis B: Enzymatic. 2003; 22(3-4): 119-133.
Geiser, L., Eeltink, S., Svec, F., Fréchet, J. M. In-line system containing porous polymer monoliths for protein digestion with immobilized pepsin, peptide preconcentration and nano-liquid chromatography separation coupled to electrospray ionization mass spectroscopy. Journal of Chromatography A. 2008;1188(2): 88-96.
Desai, P. D., Dave, A. M., Devi, S. Entrapment of lipase into K-carrageenan beads and its use in hydrolysis of olive oil in biphasic system. Journal of Molecular Catalysis B: Enzymatic. 2004; 31(4-6): 143-150.
Robertson, J. G. Enzymes as a special class of therapeutic target: Clinical drugs and modes of action. Current Opinion in Structural Biology, 2007; 17(6): 674-679.
Hildebrandt, A., Bragos, R., Lacorte, S., Marty, J. L. Performance of a portable biosensor for the analysis of organophosphorus and carbamate insecticides in water and food. Sensors and Actuators B: Chemical. 2008; 133(1):195-201.
Scheller, F. and Schubert, F. Techniques and Instrumentation in Analytical Chemistry: Biosensors. New York: Elsevier. 1992.
Tischer, W., Wedekind, F. Immobilized enzymes: Methods and applications. In Biocatalysis-From Discovery to Application. Springer, Berlin, Heidelberg. 1999: 95-126.
Zhang, H., Luo, J., Li, S., Wei, Y., Wan, Y. Biocatalytic membrane based on polydopamine coating: a platform for studying immobilization mechanisms. Langmuir. 2018; 34(8): 2585-2594.
Naghdi, M., Taheran, M., Brar, S. K., Kermanshahi-Pour, A., Verma, M., Surampalli, R. Y. Pinewood nanobiochar: A unique carrier for the immobilization of crude laccase by covalent bonding. International Journal of Biological Macromolecules. 2018; 115: 563-571.
Binhayeeding, N., Yunu, T., Pichid, N., Klomklao, S., Sangkharak, K. Immobilization of Candida rugosa lipase on polyhydroxybutyrate via a combination of adsorption and cross-linking agents to enhance acylglycerol production. Process Biochemistry. 2020; 95: 174-185.
Schmieg, B., Schimek, A., Franzreb, M. Development and performance of a 3D‐printable poly (ethylene glycol) diacrylate hydrogel suitable for enzyme entrapment and long‐term biocatalytic applications. Engineering In Life Sciences. 2018; 18(9): 659-667.
Sani, S., Mohd Muhid, M. N., & Hamdan, H. Design, synthesis and activity study of tyrosinase encapsulated silica aerogel (TESA) biosensor for phenol removal in aqueous solution. Journal of Sol-Gel Science and Technology; 2011; 59(1): 7-18.
Girelli, A. M., Mattei, E., Messina, A., Papaleo, D. Immobilization of mushroom tyrosinase on controlled pore glass: Effect of chemical modification. Sensors and Actuators B: Chemical. 2007; 125(1): 48-54.
Aitken, M. D. Waste treatment applications of enzymes: opportunities and obstacles. The Chemical Engineering Journal. 1993; 52(2): B49-B58.
Qu, Y., Qin, L., Liu, X., Yang, Y. Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere. 2020; 251: 126376.
Zhang, M., Zhang, Z., Liu, S., Peng, Y., Chen, J., Ki, S. Y. Ultrasound-assisted electrochemical treatment for phenolic wastewater. Ultrasonics Sonochemistry. 2020; 65: 105058.
Hairuddin, M. N., Mubarak, N. M., Khalid, M., Abdullah, E. C., Walvekar, R., Karri, R. R. Magnetic palm kernel biochar potential route for phenol removal from wastewater. Environmental Science and Pollution Research. 2019; 26(34): 35183-35197.
Archana, V., Begum, K. M. S., Anantharaman, N. Studies on removal of phenol using ionic liquid immobilized polymeric micro-capsules. Arabian Journal of Chemistry. 2016; 9(3): 371-382.
Bazrafshan, E., Mostafapour, F. K., Faridi, H., Zazouli, M. A. Application of Moringa peregrina seed extract as a natural coagulant for phenol removal from aqueous solutions. African Journal of Biotechnology. 2012; 11(103): 16758-16766.
Britto, J. M., de Oliveira, S. B., Rabelo, D., do Carmo Rangel, M. Catalytic wet peroxide oxidation of phenol from industrial wastewater on activated carbon. Catalysis Today. 2008; 133: 582-587.
Adak, A., Pal, A., Bandyopadhyay, M. Removal of phenol from water environment by surfactant-modified alumina through adsolubilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006; 277(1-3): 63-68.
Bayramoğlu, G., Arıca, M. Y. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads. Journal Of Hazardous Materials. 2008; 156(1-3): 148-155.
Karam, J., Nicell, J. A. Potential applications of enzymes in waste treatment. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental and Clean Technology, 1997; 69(2): 141-153.
Rittmann, B. E., McCarty, P. L. Environmental Biotechnology: Principles and Applications. Tata McGraw-Hill Education. 2012.
Atlow, S. C., Bonadonna‐Aparo, L., Klibanov, A. M. Dephenolization of industrial wastewaters catalyzed by polyphenol oxidase. Biotechnology and Bioengineering. 1984; 26(6): 599-603.
Ensuncho, L., Alvarez-Cuenca, M., Legge, R. L. Removal of aqueous phenol using immobilized enzymes in a bench-scale and pilot scale three-phase fluidized bed reactor. Bioprocess and Biosystems Engineering. 2005; 27(3): 185-191.
Liu, Z. J., Liu, B. H., Kong, J .L., Deng, J. Q. Probing trace phenols based on mediator-free alumina sol–gel derived tyrosinase biosensor. Analytical Chemistry. 2000; 72: 4707–12.
Kochana, J., Wapiennik, K., Kozak, J., Knihnicki, P., Pollap, A., Woźniakiewicz, M., Nowak, J., Kościelniak, P. Tyrosinase-based biosensor for determination of bisphenol a in a flow-batch system. Talanta. 2015; 144: 163–170.
Wang, B., Zheng, J., He, Y., Sheng, Q. A sandwich-type phenolic biosensor based on tyrosinase embedding into single-wall carbon nanotubes and polyaniline nanocomposites. Sensors and Actuators B: Chemical. 2013; 186: 417–422.
Cerrato-Alvarez, M., Bernalte, E., Bernalte-García, M.J., Pinilla-Gil, E. Fast and direct amperometric analysis of polyphenols in beers using tyrosinase-modified screen-printed gold nanoparticles biosensors. Talanta. 2019; 193: 93–99.
da Silva, W., Ghica, M. E., Ajayi, R. F., Iwuoha, E. I., Brett, C. M. Tyrosinase based amperometric biosensor for determination of tyramine in fermented food and beverages with gold nanoparticle doped poly (8-anilino-1-naphthalene sulphonic acid) modified electrode. Food chemistry. 2019; 282: 18-26.
Bounegru, A.V., Apetrei, C. Development of a novel electrochemical biosensor based on carbon nanofibers–gold nanoparticles–tyrosinase for the detection of ferulic acid in cosmetics. Sensors. 2020; 20: 6724.
García-Guzmán, J.J., López-Iglesias, D., Cubillana-Aguilera, L., Lete, C.; Lupu, S., Palacios-Santander, J.M., Bellido-Milla, D. Assessment of the polyphenol indices and antioxidant capacity for beers and wines using a tyrosinase-based biosensor prepared by sinusoidal current method. Sensors. 2019; 19: 66.
Zhu, B., Wei, N. Tyrosinase-functionalized polyhydroxyalkanoate bio-beads as a novel biocatalyst for degradation of bisphenol analogues. Environment international. 2022; 163: 107225.
Bounegru, A. V., Apetrei, C. Laccase and tyrosinase biosensors used in the determination of hydroxycinnamic acids. International Journal of Molecular Sciences. 2021; 22(9): 4811.
Bhatia, R. B., Brinker, C. J., Gupta, A. K., Singh, A. K. Aqueous sol-gel process for protein encapsulation. Chemistry of Materials. 2000; 12(8): 2434-2441.
Dunn, B., Miller, J. M., Dave, B. C., Valentine, J. S., Zink, J. I. Strategies for encapsulating biomolecules in sol-gel matrices. Acta Materialia. 1998; 46(3): 737-741.
Avnir, D., Braun, S., Lev, O., Ottolenghi, M. Enzymes and other proteins entrapped in sol-gel materials. Chemistry of Materials. 1994; 6(10): 1605-1614.
Cabrera, K. Applications of silica based monolithic HPLC columns. Journal Of Separation Science. 2004; 27(10‐11): 843-852.
Shao, J., Ge, H., Yang, Y. Immobilization of polyphenol oxidase on chitosan-SiO2 gel for removal of aqueous phenol. Biotechnology Letters. 2007; 29(6): 901-905.
Abdullah, J., Ahmad, M., Heng, L. Y., Karuppiah, N., Sidek, H. Chitosan-based tyrosinase optical phenol biosensor employing hybrid nafion/sol-gel silicate for MBTH immobilization. Talanta. 2006; 70(3): 527-532.
Chen, Q., Kenausis, G. L., Heller, A. Stability of oxidases immobilized in silica gels. Journal of the American Chemical Society. 1998; 120(19): 4582-4585.
Maury, S., Buisson, P., Perrard, A., Pierre, A. C. Compared esterification kinetics of the lipase from Burkholderia cepacia either free or encapsulated in a silica aerogel. Journal of Molecular Catalysis B: Enzymatic. 2005; 32(5-6): 193-203.
Buisson, P., Hernandez, C., Pierre, M., Pierre, A. C. Encapsulation of lipases in aerogels. Journal of Non-Crystalline Solids. 2001; 285(1-3): 295-302.
Sani, N. S., Malek, N. A. N. N., Jemon, K., Kadir, M. R. A., Hamdan, H. In vitro bioactivity and osteoblast cell viability studies of hydroxyapatite-incorporated silica aerogel. Journal of Sol-Gel Science and Technology. 2020; 96(1): 166-177.
Hench, L. L., West, J. K. The sol-gel process. Chemical Reviews. 1990; 90(1): 33-72.