Characterisation Analyses on Silver Nanoparticles Grafted Polyurethane as a Potential Material for Electroencephalography Electrodes

Authors

  • Fakhira Alanna Shabira Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Dida Faadihilah Khrisna Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Eko Supriyanto Department of Biomedical Engineering and Health Sciences, Faculty of Electrical Engineering Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Jens Haueisen Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Germany
  • Syafiqah Saidin IJN-UTM Cardiovascular Engineering Centre, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jomalisc.v2.47

Keywords:

Electroencephalography, dry electrodes, polyurethane, silver nanoparticles, polydopamine

Abstract

The development of dry electrodes for electrophysiological signal detection has rapidly increased in recent years to replace the use of wet electrodes. Researchers have explored different materials and designs in developing reliable and user-friendly dry electrodes. The utilization of organic-based material such as biocompatible synthetic polymer is necessary to produce a better skin interface for electrophysiological signal detection. Therefore, this study aims to surface modify the based-substrate of polyurethane (PU) by employing polydopamine (PDA) as a mediator layer to immobilize different concentrations (25, 50 and 100 mM AgNO3) of conductive silver nanoparticles (AgNPs) onto the PU surfaces. The chemical functionality and morphology analyses were performed on the samples using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscope/energy dispersive X-ray (SEM/EDX), respectively. The wettability contact angle instrument was then used to determine the wettability properties of the samples. The ATR-FTIR analysis indicated the existence of N–H group, C–O stretch, C–H, C=O and C–N bonds which belong to the chemical functionalities of PU/PDA. While the SEM/EDX results showed that the PU/PDA/50AgNPs contained the most optimal AgNPs distribution on the PU/PDA surfaces with less particle agglomeration. Other than that, the PU/PDA/50AgNPs exhibited better hydrophobicity by increasing the water contact angle of the PU/PDA from 82.96 ± 1.37° to 92.08 ± 1.98°. Therefore, the most desired physicochemical properties for the fabrication of EEG electrodes are possessed by the PU/PDA/50AgNPs due to identical chemical functionalities, desired morphology with a homogeneous dispersion of AgNPs and greater hydrophobicity.

References

Chen, C. S., Chien, T. S., Lee, P. L., Jeng, Y., & Yeh, T. K. (2020). Prefrontal brain electrical activity and cognitive load analysis using a non-linear and non-stationary approach. IEEE Access, 8, 211115–211124. https://doi.org/10.1109/ACCESS.2020.3038807

Biasiucci, A., Franceschiello, B., & Murray, M. M. (2019). Electroencephalography. Current Biology, 29(3), R80–R85. Cell Press. https://doi.org/10.1016/j.cub.2018.11.052

Di Flumeri, G., Aricò, P., Borghini, G., Sciaraffa, N., Di Florio, A., & Babiloni, F. (2019). The dry revolution: Evaluation of three different eeg dry electrode types in terms of signal spectral features, mental states classification and usability. Sensors (Switzerland), 19(6). https://doi.org/10.3390/s19061365

Barsy, B. G., Gyori, G., & Szemes, P. T. (2020). Development of EEG measurement and processing system in LabVIEW development environment. International Review of Applied Sciences and Engineering, 11(3), 287–297. https://doi.org/10.1556/1848.2020.00151

Hsieh, J. C., Li, Y., Wang, H., Perz, M., Tang, Q., Tang, K. W. K., Pyatnitskiy, I., Reyes, R., Ding, H., & Wang, H. (2022). Design of hydrogel-based wearable EEG electrodes for medical applications. Journal of Materials Chemistry B, 10(37), 7260–7280. https://doi.org/10.1039/d2tb00618a

Hua, H., Tang, W., Xu, X., Feng, D. D., & Shu, L. (2019). Flexible multi-layer semi-dry electrode for scalp EEG measurements at hairy sites. Micromachines, 10(8). https://doi.org/10.3390/mi10080518

Tseghai, G. B., Malengier, B., Fante, K. A., & Van Langenhove, L. (2020). The status of textile-based dry eeg electrodes. Autex Research Journal. https://doi.org/10.2478/aut-2019-0071

Liao, C., Li, Y., & Tjong, S. C. (2019). Bactericidal and cytotoxic properties of silver nanoparticles. International Journal of Molecular Sciences, 20(2). https://doi.org/10.3390/ijms20020449

Li, Y., Li, C., Yu, R., & Ding, Y. (2022). Application of polydopamine on the implant surface modification. Polymer Bulletin, 79(8), 5613–5633. https://doi.org/10.1007/s00289-021-03793-9

Naureen, B., Haseeb, A. S. M. A., Basirun, W. J., & Muhamad, F. (2021). Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. Materials Science and Engineering C, 118, 111228. https://doi.org/10.1016/j.msec.2020.111228

He, G., Dong, X., & Qi, M. (2020). From the perspective of material science: a review of flexible electrodes for brain-computer interface. Materials Research Express, 7(10), 102001. https://doi.org/10.1088/2053-1591/abb857

Matinha-Cardoso, J., Mota, R., Gomes, L. C., Gomes, M., Mergulhão, F. J., Tamagnini, P., L. Martins, M. C., & Costa, F. (2021). Surface activation of medical grade polyurethane for the covalent immobilization of an anti-adhesive biopolymeric coating. Journal of Materials Chemistry B, 9(17), 3705-3715. https://doi.org/10.1039/D1TB00278C

Chen, J., Wang, Q., Luan, M., Mo, J., Yan, Y., & Li, X. (2019). Polydopamine as reinforcement in the coating of nano-silver on polyurethane surface: Performance and mechanisms. Progress in Organic Coatings, 137, 105288. https://doi.org/10.1016/j.porgcoat.2019.105288

Bettucci, O., Matrone, G. M., & Santoro, F. (2022). Conductive polymer‐based bioelectronic platforms toward sustainable and biointegrated devices: a journey from skin to brain across human body interfaces. Advanced Materials Technologies, 7(2), 2100293. https://doi.org/10.1002/admt.202100293

Saidin, S. (2014). Immobilisation of Biomimetic Hydroxyapatite & Silver Nanoparticles. LAP LAMBERT Academic Publisher, 1, 33–35.

Chew, N. G. P., Zhang, Y., Goh, K., Ho, J. S., Xu, R., & Wang, R. (2019). Hierarchically structured janus membrane surfaces for enhanced membrane distillation performance. ACS Applied Materials and Interfaces, 11(28), 25524–25534. https://doi.org/10.1021/acsami.9b05967

Yassin, M. A., Elkhooly, T. A., Elsherbiny, S. M., Reicha, F. M., & Shokeir, A. A. (2019). Facile coating of urinary catheter with bio–inspired antibacterial coating. Heliyon, 5(12), e02986. https://doi.org/10.1016/j.heliyon.2019.e02986

Mikhailova, E. O. (2020). Silver nanoparticles: Mechanism of action and probable bio-application. Journal of functional biomaterials, 11(4), 84. MDPI. https://doi.org/10.3390/jfb11040084

Turan, D. (2021). Water Vapor Transport Properties of Polyurethane Films for Packaging of Respiring Foods. Food Engineering Reviews, 13(1), 54–65. https://doi.org/10.1007/s12393-019-09205-z

Vona, D., Cicco, S. R., Ragni, R., Leone, G., Lo Presti, M., & Farinola, G. M. (2018). Biosilica/polydopamine/silver nanoparticles composites: New hybrid multifunctional heterostructures obtained by chemical modification of Thalassiosira weissflogii silica shells. MRS Communications, 8(3), 911–917. https://doi.org/10.1557/mrc.2018.103

Wang, Z., Yang, H. C., He, F., Peng, S., Li, Y., Shao, L., & Darling, S. B. (2019). Mussel-inspired surface engineering for water-remediation materials. Matter, 1(1), 115-155. https://doi.org/10.1016/j.matt.2019.05.002

Zhang, Y., Zeng, Z., Ma, X. Y. D., Zhao, C., Ang, J. M., Ng, B. F., Wan, M. P., Wong, S. C., Wang, Z., & Lu, X. (2019). Mussel-inspired approach to cross-linked functional 3D nanofibrous aerogels for energy-efficient filtration of ultrafine airborne particles. Applied Surface Science, 479, 700–708. https://doi.org/10.1016/j.apsusc.2019.02.173

Nie, Y., Wang, T., Wu, M., Wang, C., Wang, J., & Han, Z. (2023). Enhanced bioactivity and antimicrobial properties of α-tricalcium phosphate cement via PDA@Ag coating. Materials Letters, 330. https://doi.org/10.1016/j.matlet.2022.133230

Ahmad, N., Ang, B. C., Amalina, M. A., & Bong, C. W. (2018). Influence of precursor concentration and temperature on the formation of nanosilver in chemical reduction method. Sains Malaysiana, 47(1), 157–168. https://doi.org/10.17576/jsm-2018-4701-19

Das, A., & Mahanwar, P. (2020). A brief discussion on advances in polyurethane applications. Advanced Industrial and Engineering Polymer Research, 3(3), 93-101. https://doi.org/10.1016/j.aiepr.2020.07.002

Pajusco, P., Malhouroux-Gaffet, N., & El Zein, G. (2015). Comprehensive characterization of the double directional UWB residential indoor channel. IEEE Transactions on Antennas and Propagation, 63(3), 1129–1139. https://doi.org/10.1109/TAP.2014.2387418

Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J. H., Abu-Omar, M., Scott, S. L., & Suh, S. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry and Engineering, 8(9), 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635

Sazali, N., Ibrahim, H., Jamaludin, A. S., Mohamed, M. A., Salleh, W. N. W., & Abidin, M. N. Z. (2020). Degradation and stability of polymer: A mini review. IOP Conference Series: Materials Science and Engineering, 788(1), 012048. https://doi.org/10.1088/1757-899X/788/1/012048

Jasmee, S., Omar, G., Masripan, N. A. B., Kamarolzaman, A. A., Ashikin, A. S., & Che Ani, F. (2018). Hydrophobicity performance of polyethylene terephthalate (PET) and thermoplastic polyurethane (TPU) with thermal effect. Materials Research Express, 5(9), 096304. https://doi.org/10.1088/2053-1591/aad81e

Yang, K., Shi, J., Wang, L., Chen, Y., Liang, C., Yang, L., & Wang, L. N. (2022). Bacterial anti-adhesion surface design: Surface patterning, roughness and wettability: A review. Journal of Materials Science & Technology, 99, 82-100. https://doi.org/10.1016/j.jmst.2021.05.028

Segan, S., Jakobi, M., Khokhani, P., Klimosch, S., Billing, F., Schneider, M., Martin, D., Metzger, U., Biesemeier, A., Xiong, X., Mukherjee, A., Steuer, H., Keller, B. M., Joos, T., Schmolz, M., Rothbauer, U., Hartmann, H., Burkhardt, C., Lorenz, G., Shipp, C. (2020). Systematic investigation of polyurethane biomaterial surface roughness on human immune responses in vitro. BioMed Research International, 2020. https://doi.org/10.1155/2020/3481549

Xi, Z. Y., Xu, Y. Y., Zhu, L. P., Wang, Y., & Zhu, B. K. (2009). A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). Journal of Membrane Science, 327(1–2), 244–253. https://doi.org/10.1016/j.memsci.2008.11.037

Kraśniewska, K., Galus, S., & Gniewosz, M. (2020). Biopolymers-based materials containing silver nanoparticles as active packaging for food applications–a review. International Journal of Molecular Sciences, 21(3), 698. https://doi.org/10.3390/ijms21030698

Saraswathi, M. S. S. A., Rana, D., Alwarappan, S., Gowrishankar, S., Vijayakumar, P., & Nagendran, A. (2019). Polydopamine layered poly (ether imide) ultrafiltration membranes tailored with silver nanoparticles designed for better permeability, selectivity and antifouling. Journal of Industrial and Engineering Chemistry, 76, 141–149. https://doi.org/10.1016/j.jiec.2019.03.014

Downloads

Published

2023-11-25

How to Cite

Shabira, F. A., Khrisna, D. F., Supriyanto, E., Haueisen, J., & Saidin, S. (2023). Characterisation Analyses on Silver Nanoparticles Grafted Polyurethane as a Potential Material for Electroencephalography Electrodes. Journal of Materials in Life Sciences (JOMALISC), 2(2), 211–219. https://doi.org/10.11113/jomalisc.v2.47

Issue

Section

Articles