A Perspective on Nanomaterials-Based Therapeutics in Fighting Against Multidrug Resistance (MDR)
DOI:
https://doi.org/10.11113/jomalisc.v2.48Keywords:
Multidrug resistance, nanomaterials, antibacterialAbstract
Nowadays, the antibiotic resistance crisis has become one of the major threats to public health, as it poses a serious medical concern that can lead to millions of fatalities, primarily due to the widespread transmission of resistance by bacterial species resulting in the development of multidrug-resistant (MDR) bacteria. In addition, the increase in MDR infections is also associated with the lack of new and effective antibacterial agents and this has prompted global initiatives to develop more effective antibacterial agents to address the issue. In the past few years, the application of nanomaterials to address this issue has attracted global attention and the development of nanomaterial-based therapeutics has been considered as an innovative strategy to treat MDR infection. For example, their unique and excellent physiochemical properties could enable them to penetrate and disrupt the bacterial cell membrane, resulting in the formation of reactive oxygen species (ROS) that eventually destroy the microbes. In this review, the applications of various types of nanomaterials, such as organic-based nanomaterials, hybrid-based nanomaterials, and inorganic-based nanomaterials, particularly in treating MDR bacteria, are summarized and discussed. Furthermore, the challenges and prospects in the development of these types of nanomaterials for their application as antibacterial agents in the treatment of MDR infections are also discussed.
References
Abdulsada, F. M., Hussein, N. N. and Sulaiman, G. M. (2023). Potentials of Iron Oxide Nanoparticles (Fe3O4): As Antioxidant and Alternative Therapeutic Agent Against Common Multidrug-Resistant Microbial Species. Iraqi Journal of Science, 64(6), 2759-2773. https://doi.org/10.24996/ijs.2023.64.6.10
Akbar, N., Z. Aslam, R. Siddiqui, M. R. Shah, and N. A. Khan. (2021). Zinc Oxide Nanoparticles Conjugated with Clinically-Approved Medicines as Potential Antibacterial Molecules. AMB Express. 11, 1-16. https://doi.org/10.1186/s13568-021-01261-1
Ali, S. G., M. A. Ansari, M. A. Alzohairy, M. N. Alomary, M. Jalal, S. AlYahya, H. M. Khan. (2020). Effect of Biosynthesized ZnO Nanoparticles on Multi-Drug Resistant Pseudomonas aeruginosa. Antibiotics. 9(5), 260. https://doi.org/10.3390/antibiotics9050260
Andronescu, E., A. M. Grumezescu, A. Ficai, I. Gheorghe, M. Chifiriuc, D. E. Mihaiescu and V. Lazar. (2012). In Vitro Efficacy of Antibiotic Magnetic Dextran Microspheres Complexes Against Staphylococcus aureus and Pseudomonas aeruginosa Strains. Biointerface Res. Appl. Chem. 2(3), 332-338.
Ayukekbong, J. A., M. Ntemgwa and A. N. Atabe. (2017). The Threat of Antimicrobial Resistance in Developing Countries: Causes and Control Strategies. Antimicrobial Resistance & Infection Control. 6(1), 1-8. https://doi.org/10.1186/s13756-017-0208-x
Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., Habib, S. S. and Memic, A. (2012). Antimicrobial Activity of Metal Oxide Nanoparticles against Gram-Positive and Gram-Negative Bacteria: A Comparative Study. International Journal of Nanomedicine, 6003-6009. https://doi.org/10.2147/IJN.S35347
Ban, G., Y. Hou, Z. Shen, J. Jia, L. Chai and C. Ma. (2023). Potential Biomedical Limitations of Graphene Nanomaterials. International Journal of Nanomedicine. 1695-1708. https://doi.org/10.2147/IJN.S402954
Banihashemi, K., N. Amirmozafari, I. Mehregan, R. Bakhtiari and B. Sobouti. (2021). Antibacterial Effect of Carbon Nanotube Containing Chemical Compounds on Drug-Resistant Isolates of Acinetobacter Baumannii. Iranian Journal of Microbiology. 13(1), 112. https://doi.org/10.18502/ijm.v13i1.5501
Beyth, N., Y. Houri-Haddad, A. Domb, W. Khan, and R. Hazan. (2015). Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evidence-based Complementary and Alternative Medicine. 2015. https://doi.org/10.1155/2015/246012
Bharadwaj, A., A. Rastogi, S. Pandey, S. Gupta and J. S. Sohal. (2022). Multidrug-Resistant Bacteria: Their Mechanism of Action and Prophylaxis. BioMed research international, 2022. https://doi.org/10.1155/2022/5419874
Chai, S., L. Zhou, Y. Chi, L. Chen, S. Pei and B. Chen. (2022). Enhanced Antibacterial Activity with Increasing P Doping Ratio in CQDs. RSC Advances, 12(43), 27709-27715. https://doi.org/10.1039/D2RA04809D
Chakraborty, N., D. Jha, I. Roy, P. Kumar, S. S. Gaurav, K. Marimuthu and H. K. Gautam. (2022). Nanobiotics Against Antimicrobial Resistance: Harnessing the Power of Nanoscale Materials and Technologies. Journal of Nanobiotechnology. 20(1), 375. https://doi.org/10.1186/s12951-022-01573-9
Chaudhary, S., A. Umar and S. K. Mehta. (2016). Selenium Nanomaterials: An Overview of Recent Developments in Synthesis, Properties and Potential Applications. Progress in Materials Science. 83, 270-329.https://doi.org/10.1016/j.pmatsci.2016.07.001
Chen, J., F. Deng, Y. Hu, J. Sun and Y. Yang. (2015). Antibacterial Activity of Graphene-Modified Anode on Shewanella Oneidensis MR-1 Biofilm in Microbial Fuel Cell. Journal of Power Sources. 290, 80-86. https://doi.org/10.1016/j.jpowsour.2015.03.033
Chinemerem-Nwobodo, D., M. C. Ugwu, C. Oliseloke Anie, M. T. Al‐Ouqaili, J. Chinedu Ikem, U. Victor Chigozie and M. Saki. (2022). Antibiotic resistance: The Challenges and Some Emerging Strategies for Tackling A Global Menace. Journal of Clinical Laboratory Analysis, 36(9), e24655. https://doi.org/10.1002/jcla.24655
Ciesinski, L., S. Guenther, R. Pieper, M. Kalisch, C. Bednorz and L. H. Wieler. (2018). High Dietary Zinc Feeding Promotes Persistence of Multi-Resistant E. Coli In The Swine Gut. PLoS One. 13(1), e0191660. https://doi.org/10.1371/journal.pone.0191660
Czyżowska, A. and A. Barbasz. 2022. A Review: Zinc Oxide Nanoparticles-Friends or Enemies. International Journal of Environmental Health Research, 32(4), 885-901. https://doi.org/10.1080/09603123.2020.1805415
D’Lima, L., M. Phadke, and V. D. Ashok. 2020. Biogenic Silver and Silver Oxide Hybrid Nanoparticles: A Potential Antimicrobial against Multi Drug-resistant Pseudomonas Aeruginosa. New Journal of Chemistry, 44:12, 4935-4941. https://doi.org/10.1039/C9NJ04216D
de Lucas-Gil, E., A. Del Campo, L. Pascual, M. Monte-Serrano, J. Menéndez, J. F Fernández and F. Rubio-Marcos. (2019). The Fight Against Multidrug-Resistant Organisms: The Role of ZnO Crystalline Defects. Materials Science and Engineering, C. 99, 575-581. https://doi.org/10.1016/j.msec.2019.02.004
Díez-Pascual, A. M. (2021). State of The Art in the Antibacterial and Antiviral Applications of Carbon-based Polymeric Nanocomposites. International Journal of Molecular Sciences. 22(19), 10511. https://doi.org/10.3390/ijms221910511
Ding, X., A. Wang, W. Tong and F. Xu. (2019). Biodegradable Antibacterial Polymeric Nanosystems: A New Hope to Cope with Multidrug-Resistant Bacteria. Small. 15, 1900999. https://doi.org/10.1002/smll.201900999
Dizaj, S. M., F. Lotfipour, M. Barzegar-Jalali, M. H. Zarrintan and K. Adibkia. (2014). Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Materials Science And Engineering: C, 44, 278-284. https://doi.org/10.1016/j.msec.2014.08.031
Etebu, E., & Arikekpar, I. (2016). Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. International Journal of Applied Microbiology and Biotechnology Research, 4(2016), 90-101.
Exner, M., S. Bhattacharya, B. Christiansen, J. Gebel, P. Goroncy-Bermes, P. Hartemann and M. Trautmann. (2017). Antibiotic Resistance: What Is So Special about Multidrug-resistant Gram-negative Bacteria?. GMS hygiene and infection control, 12.
Facchinatto, W. M., L. O. Araujo, T. B. Moraes, T. F. Abelha, T. H. Lima, D. M. D. Santos and A. R. Caires. (2022). Antimicrobial and Photoantimicrobial Activities of Chitosan/CNPPV Nanocomposites. International Journal of Molecular Sciences, 23(20), 12519. https://doi.org/10.3390/ijms232012519
Falagan-Lotsch, P., Grzincic, E. M., & Murphy, C. J. (2016). One low-dose exposure of gold nanoparticles induces long-term changes in human cells. Proceedings of the National Academy of Sciences, 113(47), 13318-13323. https://doi.org/10.1073/pnas.1616400113
Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current Status and Future Prospects. FEMS Microbiology Reviews, 41(3), 430-449. https://doi.org/10.1093/femsre/fux007
Freitas, B., W. G. Nunes, D. M. Soares, F. C. Rufino, C. M. Moreira, L. M. Da Silva and H. Zanin. (2021). Robust, Flexible, Freestanding and High Surface Area Activated Carbon and Multi-Walled Carbon Nanotubes Composite Material with Outstanding Electrode Properties For Aqueous-Based Supercapacitors. Materials Advances. 2(13), 4264-4276.
https://doi.org/10.1039/D0MA00783H
Gao, T., H. Zeng, H. Xu, F. Gao, W. Li, S. Zhang and W. Zeng. (2018). Novel Self-Assembled Organic Nanoprobe for Molecular Imaging and Treatment of Gram-Positive Bacterial Infection. Theranostics, 8(7), 1911. https://doi.org/10.7150/thno.22534
Gautam, A. (2022). Antimicrobial Resistance: The Next Probable Pandemic. JNMA: Journal of the Nepal Medical Association, 60(246), 225. https://doi.org/10.31729/jnma.7174
Ghanim, R. R., M. R. Mohammad and A. M. A. Hussien. (2018). Antibacterial Activity and Morphological Characterization of Synthesis Graphene Oxide Nanosheets by Simplified Hummer's Method. Biosciences Biotechnology Research Asia. 15(3), 627. https://doi.org/10.13005/bbra/2669
Gill, R. K., R. K. Rawal and J. Bariwal. (2015). Recent Advances in the Chemistry and Biology of Benzothiazoles. Archiv der Pharmazie. 348(3), 155-178. https://doi.org/10.1002/ardp.201400340
Guo, L., H. Wang, Y. Wang, F. Liu and L. Feng. (2020). Organic Polymer Nanoparticles with Primary Ammonium Salt as Potent Antibacterial Nanomaterials. ACS Applied Materials & Interfaces, 12(19), 21254-21262. https://doi.org/10.1021/acsami.9b19921
Gupta, A., R. F. Landis and V. M. Rotello. (2016). Nanoparticle-based Antimicrobials: Surface Functionality is Critical. F1000Research. 5. https://doi.org/10.12688/f1000research.7595.1
Hatta, M. H. M., K. Batumalaie, J. Matmin and J. Malagobadan. (2023). Carbon and Graphene Quantum Dots as Bionanomaterials: A Perspective View of COVID-19. Journal of Materials in Life Sciences. 96-104.
Hatta, M. H. M., J. Matmin, N. A. N. N. Malek, F. H. Kamisan, A. Badruzzaman, K. Batumalaie and R. Abdul Wahab. (2023). COVID‐19: Prevention, Detection, and Treatment by Using Carbon Nanotubes‐Based Materials. Chemistry Select. 8(7), e202204615. https://doi.org/10.1002/slct.202204615
Hart, C. A. and S. Kariuki. (1998). Antimicrobial Resistance in Developing Countries. BMJ. 317(7159), 647-650. https://doi.org/10.1136/bmj.317.7159.647
Huang, H., Q. Yuan, J. S. Shah, R. D. K. Misra. (2011). A New Family of Folate-Decorated and Carbon Nanotube-Mediated Drug Delivery System: Synthesis and Drug Delivery Response. Advanced Drug Delivery Reviews. 63(14-15), 1332-1339.
https://doi.org/10.1016/j.addr.2011.04.001
Jatoi, A. W., H. Ogasawara, I. S. Kim and Q. Q. Ni. (2020). Cellulose Acetate/Multi-Wall Carbon Nanotube/Ag Nanofiber Composite for Antibacterial Applications. Materials Science And Engineering: C. 110, 110679. https://doi.org/10.1016/j.msec.2020.110679
Jiang, S., K. Lin and M. Cai. (2020). Zno Nanomaterials: Current Advancements in Antibacterial Mechanisms and Applications. Frontiers in Chemistry. 8, 580. https://doi.org/10.3389/fchem.2020.00580
Jin, S. E., and H. E. Jin. (2021). Antimicrobial Activity of Zinc Oxide Nano/Microparticles And their Combinations against Pathogenic Microorganisms for Biomedical Applications: From Physicochemical Characteristics to Pharmacological Aspects. Nanomaterials. 11(2), 263. https://doi.org/10.3390/nano11020263
Kang, S., M. Herzberg, D. F. Rodrigues and M. Elimelech. (2008). Antibacterial Effects of Carbon Nanotubes: Size Does Matter!. Langmuir. 24(13), 6409-6413. https://doi.org/10.1021/la800951v
Karahan, H. E., C. Wiraja, C. J. Xu, J. Wei, Y. L. Wang, L. Wang, F. Liu, Y. Chen. (2018). Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives. Adv. Healthcare Mater. 7, 1701406. https://doi.org/10.1002/adhm.201701406
Keerthana, S. and A. Kumar. (2020). Potential Risks and Benefits of Zinc Oxide Nanoparticles: A Systematic Review. Critical Reviews in Toxicology. 50(1), 47-71. https://doi.org/10.1080/10408444.2020.1726282
Kumar, P., P. Huo. R. Zhang and B. Liu. (2019). Antibacterial Properties of Graphene-based Nanomaterials. Nanomaterials. 9(5), 737. https://doi.org/10.3390/nano9050737
Loomba, L. and T. Scarabelli. (2013). Metallic Nanoparticles and their Medicinal Potential. Part I. Gold and Silver colloids. Therapeutic Delivery. 4(7), 859-873. https://doi.org/10.4155/tde.13.55
Li, B. and T. J. Webster. (2018). Bacteria Antibiotic Resistance: New Challenges and Opportunities for Implant‐Associated Orthopedic Infections. Journal of Orthopaedic Research. 36(1), 22-32. https://doi.org/10.1002/jor.23656
Makabenta, J. M. V., A. Nabawy, C. H. Li, S. Schmidt-Malan, R. Patel and V. M. Rotello. (2021). Nanomaterial-based Therapeutics for Antibiotic-Resistant Bacterial Infections. Nature Reviews Microbiology. 19(1), 23-36. https://doi.org/10.1038/s41579-020-0420-1
Mancuso, G., A. E. Midiri, C. Gerace, Biondo. (2021). Bacterial Antibiotic Resistance: The most critical pathogens. Pathogens. 10(10), 1310. https://doi.org/10.3390/pathogens10101310
Masoumeh, A. M., R. N. Hamideh, S. Pardis and K. N. R. Ali. (2022). Improving Antibacterial Activity of Methicillin by Conjugation to Functionalized Single-Wall Carbon Nanotubes Against MRSA. International Journal of Peptide Research and Therapeutics. 28(3), 84. https://doi.org/10.1007/s10989-022-10377-2
Mohammed, H., A. Kumar, E. Bekyarova, Y. Al-Hadeethi, X. Zhang, M. Chen and L. Rimondini. (2020). Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-functionalized Biomaterials. A scope review. Frontiers in Bioengineering and Biotechnology. 8: 465. https://doi.org/10.3389/fbioe.2020.00465
Mohammed, M. K., M. R. Mohammad, M. S. Jabir and D. S. Ahmed. (2020). Functionalization, Characterization, and Antibacterial Activity of Single Wall and Multi Wall Carbon Nanotubes. In IOP Conference Series: Materials Science and Engineering. 757(1), 012028. https://doi.org/10.1088/1757-899X/757/1/012028
Mohd Hatta, M. H., J. Matmin, N. F. Ghazalli, M. A. Abd Khadir Jalani and F. Hussin. (2023). Recent Modifications of Carbon Nanotubes for Biomedical Applications. Jurnal Teknologi, 85(2), 83-100. https://doi.org/10.11113/jurnalteknologi.v85.19253
Murugan, E. and G. Vimala. (2011). Effective Functionalization of Multiwalled Carbon Nanotube with Amphiphilic Poly (Propyleneimine) Dendrimer Carrying Silver Nanoparticles for Better Dispersability and Antimicrobial Activity. Journal of Colloid and Interface Science. 357(2), 354-365. https://doi.org/10.1016/j.jcis.2011.02.009
Nanda, S. S., D. K. Yi and K. Kim. (2016). Study of Antibacterial Mechanism of Graphene Oxide using Raman Spectroscopy. Scientific Reports. 6(1), 28443. https://doi.org/10.1038/srep28443
Naskar, A. and K. S. Kim. (2019). Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat Bacterial Infections: Advantages and Limitations. Microorganisms. 7(9), 356. https://doi.org/10.3390/microorganisms7090356
Naskar, A., S. Lee and K. S. Kim. (2020). Antibacterial Potential of Ni-doped Zinc Oxide Nanostructure: Comparatively More Effective Against Gram-negative Bacteria including Multi-drug Resistant Strains. RSC Advances. 10(3), 1232-1242. https://doi.org/10.1039/C9RA09512H
Okeke, I. N., K. P. Klugman, Z. A. Bhutta, A. G. Duse, P. Jenkins, T. F. O'Brien, R. Laxminarayan. (2005). Antimicrobial Resistance in Developing Countries. Part II: Strategies for Containment. The Lancet Infectious Diseases. 5(9), 568-580. https://doi.org/10.1016/S1473-3099(05)70217-6
Okkeh, M., N. Bloise, E. Restivo, L. De Vita, P. Pallavicini and L. Visai. (2021). Gold Nanoparticles: Can They be the Next Magic Bullet for Multidrug-Resistant Bacteria?. Nanomaterials. 11(2), 312. https://doi.org/10.3390/nano11020312
Ozcicek, I., Aysit, N., Cakici, C. and Aydeger, A. (2021). The Effects of Surface Functionality and Size of Gold Nanoparticles on Neuronal Toxicity, Apoptosis, ROS Production and Cellular/Suborgan Biodistribution. Materials Science and Engineering: C, 128, 112308. https://doi.org/10.1016/j.msec.2021.112308
Pan, Y. X., Q. H. Xu, H. M. Xiao and C. Y. Li. (2023). Insights into the Antibacterial Activity and Antibacterial Mechanism of Silver Modified Fullerene towards Staphylococcus Aureus by Multiple Spectrometric Examinations. Chemosphere. 140136. https://doi.org/10.1016/j.chemosphere.2023.140136
Patil, T. V., S. D. Dutta, D. K. Patel, K. Ganguly and K. T. Lim. (2023). Electrospinning Near Infra-Red Light-Responsive Unzipped CNT/PDA Nanofibrous Membrane for Enhanced Antibacterial Effect and Rapid Drug Release. Applied Surface Science, 612, 155949. https://doi.org/10.1016/j.apsusc.2022.155949
Patil, T. V., D. K. Patel, S. D. Dutta, K. Ganguly, A. Randhawa and K. T. Lim. (2021). Carbon Nanotubes-Based Hydrogels for Bacterial Eradiation and Wound-Healing Applications. Applied Sciences. 11(20), 9550. https://doi.org/10.3390/app11209550
Pham, V. T., V. K. Truong, M. D. Quinn, S. M. Notley, Y. Guo, V. A. Baulin and E. P. Ivanova. (2015). Graphene Induces Formation of Pores that Kill Spherical and Rod-Shaped Bacteria. ACS nano, 9(8), 8458-8467. https://doi.org/10.1021/acsnano.5b03368
Prasher, P., M. Singh and H. Mudila. (2018). Silver Nanoparticles as Antimicrobial Therapeutics: Current Perspectives and Future Challenges. 3 Biotech. 8, 1-23. https://doi.org/10.1007/s13205-018-1436-3
Puspasari, V., A. Ridhova, A. Hermawan, M. I. Amal and M. M. Khan. (2022). Zno-Based Antimicrobial Coatings for Biomedical Applications. Bioprocess and Biosystems Engineering. 45(9), 1421-1445. https://doi.org/10.1007/s00449-022-02733-9
Reygaert, W. C. (2018). An Overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiology, 4(3), 482. https://doi.org/10.3934/microbiol.2018.3.482
Rocha, C. V., V. Gonçalves, M. C. da Silva, M. Bañobre-López and J. Gallo. (2022). PLGA-Based Composites for Various Biomedical Applications. International Journal of Molecular Sciences, 23(4), 2034. https://doi.org/10.3390/ijms23042034
Rodríguez-Otero, A., N. Losada-García, S. Guerra-Rodríguez, J. M. Palomo and J. Rodríguez-Chueca. (2023). Antibacterial Effect of Metal-Enzyme Hybrid Nanomaterials. Journal of Environmental Chemical Engineering, 11(5), 110499. https://doi.org/10.1016/j.jece.2023.110499
Saliev, T. (2019). The Advances in Biomedical Applications of Carbon Nanotubes. C. 5(2), 29. https://doi.org/10.3390/c5020029
Schifano, E., G. Cavoto, F. Pandolfi, G. Pettinari, A. Apponi, A. Ruocco and I. Rago. (2023). Plasma-Etched Vertically Aligned CNTs with Enhanced Antibacterial Power. Nanomaterials. 13(6), 1081. https://doi.org/10.3390/nano13061081
Senut, M. C., Zhang, Y., Liu, F., Sen, A., Ruden, D. M. and Mao, G. (2016). Size‐dependent Toxicity of Gold Nanoparticles on Human Embryonic Stem Cells and their Neural Derivatives. Small, 12(5), 631-646. https://doi.org/10.1002/smll.201502346
Serrano-Aroca, Á., K. Takayama, A. Tuñón-Molina, M. Seyran, S. S. Hassan, P. Pal Choudhury and A. Brufsky. (2021). Carbon-Based Nanomaterials: Promising Antiviral Agents to Combat COVID-19 in the Microbial-Resistant Era. ACS Nano. 15(5), 8069-8086. https://doi.org/10.1021/acsnano.1c00629
Shah, M. S. A. S., Nag, M., Kalagara, T., Singh, S. Manorama, S. V. (2008). Silver on PEG-PU-TiO2 Polymer Nanocomposite Films: An Excellent System for Antibacterial Applications. Chemistry of Materials, 20(7), 2455-2460. https://doi.org/10.1021/cm7033867
Shahverdi, A. R., A. Fakhimi, H. R. Shahverdi and S. Minaian. (2007). Synthesis and Effect of Silver Nanoparticles on the Antibacterial Activity of Different Antibiotics Against Staphylococcus Aureus and Escherichia Coli. Nanomedicine: Nanotechnology, Biology and Medicine. 3(2), 168-171. https://doi.org/10.1016/j.nano.2007.02.001
Sharma, D. K., S. Shukla, K. K. Sharma and V. Kumar. (2022). A Review on ZnO: Fundamental Properties and Applications. Materials Today: Proceedings. 49, 3028-3035. https://doi.org/10.1016/j.matpr.2020.10.238
Sirelkhatim, A., S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori and D. Mohamad. (2015). Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-micro Letters. 7, 219-242. https://doi.org/10.1007/s40820-015-0040-x
Smith, S. C. and D. F. Rodrigues. (2015). Carbon-Based Nanomaterials for Removal of Chemical and Biological Contaminants from Water: A Review of Mechanisms and Applications. Carbon. 91, 122-143. https://doi.org/10.1016/j.carbon.2015.04.043
Steckiewicz, K. P., Barcinska, E., Malankowska, A., Zauszkiewicz–Pawlak, A., Nowaczyk, G., Zaleska-Medynska, A., and Inkielewicz-Stepniak, I. (2019). Impact of Gold Nanoparticles Shape on their Cytotoxicity against Human Osteoblast and Osteosarcoma in in vitro model. Evaluation of the Safety of Use and Anti-cancer Potential. Journal of Materials Science: Materials in Medicine, 30, 1-15. https://doi.org/10.1007/s10856-019-6221-2
Tan, Y., Ma, Y., Zhao, C., Huang, Z. and Zhang, A. (2023). Hybrid Nanoparticles of Tetraamino Fullerene and Benzothiadiazole Fluorophore as Efficient Photosensitizers against Multidrug-resistant Bacteria. Journal of Photochemistry and Photobiology A: Chemistry, 438, 114537. https://doi.org/10.1016/j.jphotochem.2023.114537
Teixeira-Santos, R., M. Gomes, L. C. Gomes and F. J. Mergulhao. (2021). Antimicrobial and Anti-Adhesive Properties of Carbon Nanotube-Based Surfaces for Medical Applications: A Systematic Review. Iscience. 24(1). https://doi.org/10.1016/j.isci.2020.102001
Terreni, M., M. Taccani and M. Pregnolato. (2021). New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules. 26(9), 2671. https://doi.org/10.3390/molecules26092671
Tu, Y., M. Lv, P. Xiu, T. Huynh, M. Zhang, M. Castelli and R. Zhou. (2013). Destructive Extraction of Phospholipids from Escherichia Coli Membranes by Graphene Nanosheets. Nature Nanotechnology. 8(8), 594-601. https://doi.org/10.1038/nnano.2013.125
Uskoković, V. (2021). Health Economics Matters in the Nanomaterial World: Cost-Effectiveness of Utilizing an Inhalable Antibacterial Nanomaterial for the Treatment of Multidrug-Resistant Pneumonia. Technology in Society. 66, 101641. https://doi.org/10.1016/j.techsoc.2021.101641
Van Den Broucke, S., J. A. Vanoirbeek, R. Derua, P. H. Hoet and M. Ghosh. (2021). Effect of Graphene and Graphene Oxide on Airway Barrier and Differential Phosphorylation of Proteins in Tight and Adherens Junction Pathways. Nanomaterials. 11(5), 1283. https://doi.org/10.3390/nano11051283
Venditti, I. (2019). Engineered gold-based Nanomaterials: Morphologies and Functionalities in Biomedical Applications. A Mini Review. Bioengineering. 6(2), 53. https://doi.org/10.3390/bioengineering6020053
Wang, A., J. Huang and Y. Yan. (2014). Hierarchical Molecular Self-assemblies: Construction and Advantages. Soft Matter. 10(19), 3362-3373. https://doi.org/10.1039/c3sm53214c
Wang, L., C. Hu and L. Shao. (2017). The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for The Future. International Journal of Nanomedicine. 1227-1249. https://doi.org/10.2147/IJN.S121956
Xie, S., S. Manuguri, G. Proietti, J. Romson, Y. Fu, A. K. Inge and M. Yan. (2017). Design and Synthesis of Theranostic Antibiotic Nanodrugs that Display Enhanced Antibacterial Activity and Luminescence. Proceedings of the National Academy of Sciences. 114(32), 8464-8469. https://doi.org/10.1073/pnas.1708556114
Xie, Y., Y. He, P. L. Irwin, T. Jin and X. Shi. (2011). Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles Against Campylobacter Jejuni. Applied And Environmental Microbiology. 77(7), 2325-2331. https://doi.org/10.1128/AEM.02149-10
Xin, Q., H. Shah, A. Nawaz, W. Xie, M. Z. Akram, A. Batool and J. R. Gong. (2019). Antibacterial Carbon‐Based Nanomaterials. Advanced Materials. 31(45), 1804838. https://doi.org/10.1002/adma.201804838
Yang, G., L. Wang, C. Zhang, P. Li, H. Du, Y. Mao and Q. Wang. (2023). Novel Graphene Quantum Dots Modified NH2-MIL-125 Photocatalytic Composites for Effective Antibacterial Property and Mechanism Insight. Separation and Purification Technology. 312, 123433. https://doi.org/10.1016/j.seppur.2023.123433
Yang, X., Yang, J., Wang, L., Ran, B., Jia, Y., Zhang, L. and Jiang, X. (2017). Pharmaceutical Intermediate-Modified Gold Nanoparticles: Against Multidrug-Resistant Bacteria and Wound-Healing Application via An Electrospun Scaffold. ACS Nano. 11(6), 5737-5745. https://doi.org/10.1021/acsnano.7b01240
Zhang, L., S. Ouyang, H. Zhang, M. Qiu, Y. Dai, S. Wang and J. Ou. (2021). Graphene Oxide Induces Dose Dependent Lung Injury in Rats By Regulating Autophagy. Experimental and Therapeutic Medicine. 21(5), 1-11. https://doi.org/10.3892/etm.2021.9893
Zhang, L., D. Pornpattananangkul, C. M. Hu and C. M. Huang. (2010). Development of Nanoparticles for Antimicrobial Drug Delivery. Current Medicinal Chemistry. 17(6), 585-594. https://doi.org/10.2174/092986710790416290
Zhu, Y., J. Xu, Y. Wang, C. Chen, H. Gu, Y. Chai and Y. Wang. (2020). Silver Nanoparticles-Decorated and Mesoporous Silica Coated Single-Walled Carbon Nanotubes with an Enhanced Antibacterial Activity for Killing Drug-Resistant Bacteria. Nano Research. 13, 389-400. https://doi.org/10.1007/s12274-020-2621-3