Advancements in Zeolitic Imidazolate Frameworks (ZIFs) for Antibacterial Therapy: Recent Innovations and Future Prospects

Authors

  • Juan Matmin Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siti Aifa Hussin Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Faizuan Abdullah Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohamad Hamdi Zainal-Abidin Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nik Ahmad Nizam Nik Malek Centre for Sustainable Nanomaterials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Muhammad Hariz Asraf Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siti Salwa Alias Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jomalisc.v2.51

Keywords:

Zeolitic imidazolate frameworks, silver nanoparticles, antibacterial therapy

Abstract

This review delves into the rapidly evolving field of Zeolitic Imidazolate Frameworks (ZIFs) and their increasing significance in antibacterial therapy. ZIFs have garnered considerable attention due to their distinct structural properties, which enable precise control over key parameters like pore size, surface chemistry, and particle-incorporating capacities. The integration of combination therapy within Ag/ZIF-8, involving the co-administration of multiple antibacterial agents or synergistic combinations of silver (Ag) nanoparticles, emerges as a prominent development. Furthermore, Ag/ZIF-8 inherently possess antibacterial properties rooted in their composition and surface characteristics, offering a multiple-action mechanism of antibacterial therapy. In the near future, ZIFs may revolutionize antibacterial treatment strategies, providing a glimmer of hope for the ongoing battle against bacterial infections due to their tailored properties.

References

Xu, H., Jia, Y., Sun, Z., Su, J., Liu, Q. S., Zhou, Q., and Jiang, G. 2022. Environmental Pollution, A Hidden Culprit for Health Issues. Eco-Environment & Health, 1(1), 31-45.

Uçar, A., Yilmaz, M. V., and Çakiroglu, F. P. 2016. Food Safety – Problems and Solutions. Significance, Prevention and Control of Food Related Diseases, Food Control,1, 3-15.

Backert, S., and Clyne, M. 2011. Pathogenesis of Helicobacter Pylori Infection. Helicobacter, 16(4), 19-25.

Tarín-Pelló, A., Suay-García, B., and Pérez-Gracia, M. T. 2022. Antibiotic Resistant Bacteria: Current Situation and Treatment Options to Accelerate the Development of a New Antimicrobial Arsenal. Expert Review of Anti-infective Therapy, 20(8), 1095-1108.

Malachova, K., Praus, P., Rybkova Z., and Kozak, O. 2011. Antibacterial and Antifungal Activities of Silver, Copper and Zinc Montmorillonites. Applied Clay Science, 53(4), 642-645.

Ye, L., Cao, Z., Liu, X., Cui, Z., Li, Z., Liang, Y., Zhu, S. and Wu, S. 2022. Noble Metal-based Nanomaterials as Antibacterial Agents. Journal of Alloys and Compounds, 904, 1-19.

Breijyeh, Z., Jubeh, B., and Karaman, R. 2020. Resistance of Gram-negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 25(6), 1340-1363.

Darby, E. M., Trampari, E., Siasat, P., Gaya, M. S., Alav, I., Webber, M. A. and Blair, J. M. 2023. Molecular Mechanisms of Antibiotic Resistance Revisited. Nature Reviews Microbiology, 21(5), 280-295.

Yun, J., and Lee, D. G. 2017. Silver Nanoparticles: A Novel Antimicrobial Agent. Antimicrobial Nanoarchitectonics, 1, 139-166.

Mishra, B., Saxena, A. and Tiwari, A. 2020. Biosynthesis of Silver Nanoparticles from Marine Diatoms Chaetoceros sp., Skeletonema sp., Thalassiosira sp., and Their Antibacterial Study. Biotechnology Reports, 28, 1-10.

More, P. R., Pandit, S., Filippis, A. D., Franci, G., Mijakovic, I. and Galdiero, M. 2023. Silver Nanoparticles: Bactericidal and Mechanistic Approach Against Drug Resistant Pathogens. Microorganisms, 11(2),1-27.

Valenti, L. E., and Giacomelli, C. E. 2017. Stability of Silver Nanoparticles: Agglomeration and Oxidation in Biological Relevant Conditions. Journal of Nanoparticle Research, 19(5), 1-9.

Makhetha, T. A., Ray, S. C. and Moutloali, R. M. 2020. Zeolitic Imidazolate Framework-8-Encapsulated Nanoparticle of Ag/Cu Composites Supported on Graphene Oxide: Synthesis and Antibacterial Activity. ACS Omega, 5(17), 9626-9640.

Han, D., Liu, X. and Wu, S., 2022. Metal Organic Framework-Based Antibacterial Agents and Their Underlying Mechanisms. Chemical Society Reviews, 51(16), 7138-7169.

Bennett, T. D., Coudert, F. X., James, S .L. and Cooper, A .I. 2021. The Changing State of Porous Materials. Nature Materials, 20(9),1179-1187.

Wang, T., Wang, Y., Sun, M., Hanif, A., Wu, H., Gu, Q., Ok, Y. S., Tsang, D. C., Li, J., Yu, J., and Shang, J. 2020. Thermally Treated Zeolitic Imidazolate Framework-8 (ZIF-8) for Visible Light Photocatalytic Degradation of Gaseous Formaldehyde. Chemical Science, 11(26), 6670-6681.

Pan, Y., Liu, Y., Zeng, G., Zhao, L., and Lai, Z. 2011. Rapid Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Nanocrystals in an Aqueous System, Chemical Communications, 47(7), 2071–2073.

Nakamura, S., Sato, M., Sato, Y., Ando, N., Takayama, T., Fujita, M., and Ishihara, M. 2019. Synthesis and Application of Silver Nanoparticles (AgNPs) for the Prevention of Infection in Healthcare Workers. International Journal of Molecular Sciences, 20(15), 1-18.

Joo, H. S., Tayemeh, M. B., Abaei, H. and Johari, S. A. 2023. On How Zeolitic Imidazolate Framework-8 Reduces Silver Ion Release and Affects Cytotoxicity and Antimicrobial Properties of AgNPs@ ZIF8 Nanocomposite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 668, 1-10.

Ershov, B. and Ershov, V. 2023. Electrochemical Mechanism of Oxidative Dissolution of Silver Nanoparticles in Water: Effect of Size on Electrode Potential and Solubility. Nanomaterials, 13(13), 1-12.

Zou, D., Liu, D. and Zhang, J. 2018. From Zeolitic Imidazolate Framework‐8 to Metal‐Organic Frameworks (MOFs): Representative Substance for the General Study of Pioneering MOF Applications. Energy & Environmental Materials, 1(4), 209-220.

Perėz, E. V., Karunaweera, C., Musselman, I. H., Balkus, K. J., and Ferraris, J. P. 2016. Origins and Evolution of Inorganic-Based and MOF-Based Mixed-Matrix Membranes for Gas Separations. Processes, 4(3), 5669-5693.

Abdi, J. 2020. Synthesis of Ag-doped ZIF-8 Photocatalyst with Excellent Performance for Dye Degradation and Antibacterial Activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 604, 125330-125343.

Zhang, Y., Jia, Y., Li, M., and Hou, L. A. 2018. Influence of the 2-methylimidazole/zinc nitrate Hexahydrate Molar Ratio on The Synthesis of Zeolitic Imidazolate Framework-8 Crystals at Room Temperature. Scientific Reports, 8(1), 1-7.

Chandra, R., and Nath, M. 2020. Controlled Synthesis of AgNPs@ZIF-8 Composite: Efficient Heterogeneous Photocatalyst for Degradation of Methylene Blue and Congo Red. Journal of Water Process Engineering, 36, 101266-101275.

Fan, G., Zheng, X., Luo, J., Peng, H., Lin, H., Bao, M., Hong, L., and Zhou, J. 2018. Rapid Synthesis of Ag/AgCl@ZIF-8 as Highly Efficient Photocatalyst for Degradation of Acetaminophen Under Visible Light. Chemical Engineering Journal, 351, 782-790.

Guo, Y., Fang, W., Fu, J., Wu, Y., Zheng, J., Gao, G., Chen, C., Yan, R., Huang, S., and Wang, C. 2018, Facile Synthesis of Ag@ZIF-8 Core-Shell Heterostructure Nanowires for Improved Antibacterial Activities. Applied Surface Science, 435, 149−155.

Zhou, J., Liu, W., and Cai, W. 2019. The Synergistic Effect of Ag/AgCl@ZIF-8 modified g-C3N4 Composite and Peroxymonosulfate for The Enhanced Visible-Light Photocatalytic Degradation of Levofloxacin. Science of The Total Environment, 696, 133962-133975

Meng, X., Duan, C., Zhang, Y., Lu, W., Wang, W., and Ni, Y. 2020. Corncob-supported AgNPs@ ZIF-8 Nanohybrids as Multifunction Biosorbents for Wastewater Remediation: Robust Adsorption, Catalysis and Antibacterial Activity. Composites Science and Technology, 200, 108384-108394.

Shen, M., Forghani, F., Kong, X., Liu, D., Ye, X., Chen, S., and Ding, T. 2020. Antibacterial Applications of Metal–Organic Frameworks and Their Composites. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1397-1419.

Soomro, N. A., Amur, S. A., Wei, Y., Shah, A. H., Jiao, M., and Yuan, Q. 2020. Facile Grafting of Silver Nanoparticles into Copper and Guanosine 5′-Monophosphate Metal Organic Frameworks (AgNPs@Cu/GMP): Characterization and Antimicrobial Activity. Journal of Cluster Science. 32, 1-11.

Sacourbaravi, R., Ansari-Asl, Z., Kooti, M., Nobakht, V., and Darabpour, E. 2020. Fabrication of AgNPs/Zn-MOF Nanocomposites and Their Application as Antibacterial Agents. Journal of Inorganic and Organometallic Polymers and Materials, 30(11), 4615-4621.

Abd El Salam, H. M., Nassar, H. N., Khidr, A. S. A., and Zaki, T. 2018. Antimicrobial Activities of Green Synthesized Ag Nanoparticles @ Ni-MOF Nanosheets. Journal of Inorganic and Organometallic Polymers and Materials, 28(6), 2791–2798.

Shakya, S., He, Y., Ren, X., Guo, T., Maharjan, A., Luo, T., Wang, T., Dhakhwa, R., Regmi, B., Li, H., Gref, R., and Zhang, J. 2019. Ultrafine Silver Nanoparticles: Ultrafine Silver Nanoparticles Embedded in Cyclodextrin Metal‐Organic Frameworks With GRGDS Functionalization to Promote Antibacterial And Wound Healing Application. Small, 15(27), 1970145-1970158.

Terban, M.W. and Billinge, S.J. 2022. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chemical Reviews, 122(1), 1208-1272.

Bellotti, D., Miller, A., Rowińska-Żyrek, M. and Remelli, M. 2022. Zn2+ and Cu2+ Binding to the Extramembrane Loop of Zrt2, a Zinc Transporter of Candida Albicans. Biomolecules, 12(1),1-16.

Liu, M., Wang, L., Zheng, X., and Xie, Z. 2017. Zirconium-based Nanoscale Metal-Organic Framework/Poly(Epsilon-Caprolactone) Mixed-Matrix Membranes as Effective Antimicrobials. ACS Applied Materials and Interfaces, 9(47), 41512–41520.

Tang, S. and Zheng, J. 2018. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Advanced Healthcare Materials, 7(13),1701503.

Jabbour, C. R., Parker, L. A., Hutter, E. M. and Weckhuysen, B. M. 2021. Chemical Targets to Deactivate Biological and Chemical Toxins using Surfaces and Fabrics. Nature Reviews Chemistry, 5(6), 70-387.

Din, S. M., Malek, N. A. N. N., Shamsuddin, M., Matmin, J., Hadi, A. A. and Asraf, M. H. 2022. Antibacterial Silver Nanoparticles using Different Organs of Ficus Deltoidea Jack var. Kunstleri (King) Corner. Biocatalysis and Agricultural Biotechnology, 44, 1-14.

Ab Razak, N. H., Nizam, N. A., Matmin, J., Dagang, W. R. Z. W., Zawawi, N. A. and Chundawat, T. S. 2021. Brief Review on Bioresources Green Synthesis of Silver Nanoparticles. Journal of Advanced Research in Materials Science, 79(1), 1-10.

Ismail, I. Q., Ishak, S. N., Malek, N. A. N. N., Mayzan, M. Z. H. and Matmin, J. 2023. Antibacterial and Adsorptive Activity of Silver Loaded Zeolite Y-layered Double Hydroxide Nanocomposite. AIP Conference Proceedings, 2554, 090011.

Polash, S. A., Khare, T., Kumar, V. and Shukla, R. 2021. Prospects of Exploring the Metal–Organic Framework for Combating Antimicrobial Resistance. ACS Applied Bio Materials, 4(12), 8060-8079.

Wang, Q., Sun, Y., Li, S., Zhang, P. and Yao, Q. 2020. Synthesis and Modification of ZIF-8 and Its Application in Drug Delivery and Tumor Therapy. RSC Advances, 10(62), 37600-37620.

Wei, Y., Wang, J., Wu, S., Zhou, R., Zhang, K., Zhang, Z., Liu, J., Qin, S. and Shi, J. 2022. Nanomaterial-based Zinc Ion Interference Therapy to Combat Bacterial Infections. Frontiers in Immunology, 13, 899992.

Downloads

Published

2023-11-25

How to Cite

Matmin, J., Hussin, S. A., Abdullah, F., Zainal-Abidin, M. H., Malek, N. A. N. N., Muhammad Hariz Asraf, & Alias, S. S. (2023). Advancements in Zeolitic Imidazolate Frameworks (ZIFs) for Antibacterial Therapy: Recent Innovations and Future Prospects. Journal of Materials in Life Sciences (JOMALISC), 2(2), 176–184. https://doi.org/10.11113/jomalisc.v2.51

Issue

Section

Articles