Nanopriming Technology for Boosting Germination of Capsicum annum using Mycosynthesized TiO2 Nanoparticles

Authors

  • Khushbu Gupta Department of Applied Sciences, The NorthCap University, Sector 23-A Gurugram-122017, Haryana, India.
  • Nik Ahmad Nizam Nik Malek Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research (ISI-ISIR), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
  • Tejpal Singh Chundawat Department of Applied Sciences, The NorthCap University, Sector 23-A Gurugram-122017, Haryana, India.

DOI:

https://doi.org/10.11113/jomalisc.v1.6

Keywords:

TiO2 nanoparticles, Capsicum annum, Fusarium oxysporum, seed germination, Nanopriming, radicle length, plumule length

Abstract

The aim of this research paper is to investigate the impact of titanium oxide nanoparticles (TiO2 NPs) on germination of Capsicum annum (Pusa Sadabahar). TiO2 Nps were prepared using Fusarium oxysporum extract and then characterized through UV- visible spectroscopy, FTIR, XRD and SEM which confirms that nanoparticles were elongated spherical with 15nm diameter. Various concentration (100-500µg/ml) of TiO2 NPs were used to study different aspects of nanoparticles on Capsicum annum. The result emphasizes the positive effects of TiO2 nanoparticles  up to the concentration of 400µg/ml on germination percentage and other morpho-physical parameters such as radical length, plumule length, fresh and dry weight, total seedling length as compared with non-treated plants. Overall we found better results of using biologically synthesized NPs in chilli plants, while the significant decrease in outcome was also observed at higher concentration.

References

Ahmad, W., Jaiswal, K. K., & Soni, S. (2020). Green synthesis of titanium dioxide (TiO2) nanoparticles by using Mentha arvensis leaves extract and its antimicrobial properties. Inorganic and Nano-Metal Chemistry, 50(10), 1032-1038.

Andersen, C. P., King, G., Plocher, M., Storm, M., Pokhrel, L. R., Johnson, M. G., & Rygiewicz, P. T. (2016). Germination and early plant development of ten plant species exposed to titanium dioxide and cerium oxide nanoparticles. Environmental Toxicology and Chemistry, 35(9), 2223-2229.

Bagheri, S., Shameli, K., & Abd Hamid, S. B. (2013). Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via sol-gel method. Journal of Chemistry, 2013.

Banik, S., & Luque, A. P. (2017). In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Spanish Journal of Agricultural Research, 15(2), 23.

Biosci, I. J. (2014). Spraying effect of maternal plants with nano-iron oxide on germination indices and electrical conductivity of produced soybean seeds. International Journal of Bioscience, 5(11), 22–27.

Chenari, H. M., Seibel, C., Hauschild, D., Reinert, F., & Abdollahian, H. (2016). Titanium dioxide nanoparticles: Synthesis, x-ray line analysis and chemical composition study. Materials Research, 19, 1319-1323.

Dehkourdi, E. H., & Mosavi, M. (2013). Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biological Trace Element Research, 155(2), 283-286.

Feizi, H., Amirmoradi, S., Abdollahi, F., & Pour, S. J. (2013). Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Annual Research & Review in Biology, 3(4), 814-824.

Gao, F., Liu, C., Qu, C., Zheng, L., Yang, F., Su, M., & Hong, F. (2008). Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase?. Biometals, 21(2), 211-217.

Gupta, K., & Chundawat, T. S. (2019a). Role of enzymes in synthesis of biologically important organic scaffolds. Asian Journal of Chemistry, 31(12), 2698-2706.

Gupta, K., & Chundawat, T. S. (2019b). Bio-inspired synthesis of platinum nanoparticles from fungus Fusarium oxysporum: Its characteristics, potential antimicrobial, antioxidant and photocatalytic activities. Materials Research Express, 6(10), 1050d6.

Gupta, K., & Chundawat, T. S. (2020). Time and size-dependent biogenically synthesized nanoparticles using fungus Fusarium oxysporum: A review on their preparation, characterization and biological activities. Nanoscience & Nanotechnology-Asia, 10(2), 95-108.

Haghighi, M., & da Silva, J. A. T. (2014). The effect of N-TiO2 on tomato, onion, and radish seed germination. Journal of Crop Science and Biotechnology, 17(4), 221-227.

Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., & Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological Trace Element Research, 105(1), 269-279.

Jiang, F., Shen, Y., Ma, C., Zhang, X., Cao, W., & Rui, Y. (2017). Effects of TiO2 nanoparticles on wheat (Triticum aestivum L.) seedlings cultivated under super-elevated and normal CO2 conditions. PloS one, 12(5), e0178088.

Kirthi, A. V., Rahuman, A. A., Rajakumar, G., Marimuthu, S., Santhoshkumar, T., Jayaseelan, C., ... & Bagavan, A. (2011). Biosynthesis of titanium dioxide nanoparticles using bacterium Bacillus subtilis. Materials Letters, 65(17-18), 2745-2747.

Laware, S. L., & Raskar, S. (2014). Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. International Journal of Current Microbiology Science, 3(7), 874-881.

Li, J., Hu, J., Ma, C., Wang, Y., Wu, C., Huang, J., & Xing, B. (2016). Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere, 159, 326-334.

Martra, G., Augugliaro, V., Coluccia, S., Garcia-Lopez, E., Loddo, V., Marchese, L., & Schiavello, M. (2000). Photocatalytic oxidation of gaseous toluene on polycrystalline TiO2: FT-IR investigation of surface reactivity of different types of catalysts. In Corma, A. Melo, F. V., Mendioroz, S. & Fierro, J. L. G. (Eds.) Studies in Surface Science and Catalysis (Vol. 130, pp. 665-670). Elsevier. https://doi.org/10.1016/S0167-2991(00)81034-4

Mexicanae, E., 2012. Torrey Botanical Society Euphorbiaceae 16, 65–67.

Moll, J., Okupnik, A., Gogos, A., Knauer, K., Bucheli, T. D., Van Der Heijden, M. G., & Widmer, F. (2016). Effects of titanium dioxide nanoparticles on red clover and its rhizobial symbiont. PloS one, 11(5), e0155111.

Qi, M., Liu, Y., & Li, T. (2013). Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biological Trace Element Research, 156(1), 323-328.

Raliya, R., Nair, R., Chavalmane, S., Wang, W. N., & Biswas, P. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7(12), 1584-1594.

Raliya, R., Tarafdar, J. C., & Biswas, P. (2016). Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. Journal of Agricultural and Food Chemistry, 64(16), 3111-3118.

Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., & Waris, A. A. (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, 269-277.

Saravanan, R., Aviles, J., Gracia, F., Mosquera, E., & Gupta, V. K. (2018). Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites. International journal of biological macromolecules, 109, 1239-1245.

Sethy, N. K., Arif, Z., Mishra, P. K., & Kumar, P. (2020). Green synthesis of TiO2 nanoparticles from Syzygium cumini extract for photo-catalytic removal of lead (Pb) in explosive industrial wastewater. Green Processing and Synthesis, 9(1), 171-181.

Szymańska, R., Kołodziej, K., Ślesak, I., Zimak-Piekarczyk, P., Orzechowska, A., Gabruk, M., & Kruk, J. (2016). Titanium dioxide nanoparticles (100–1000 mg/l) can affect vitamin E response in Arabidopsis thaliana. Environmental Pollution, 213, 957-965.

Pozveh, Z. T., Razavizadeh, R., & Rostami, F. (2014). Changes occurring in canola (Brassica napus L.) in response silver nanoparticles treatment under in vitro conditions. Indian Journal of Fundamental and Applied Life Sciences, 4(3), 797-807.

Tumburu, L., Andersen, C. P., Rygiewicz, P. T., & Reichman, J. R. (2015). Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. Environmental Toxicology and Chemistry, 34(1), 70-83.

Wang, R., Shi, K., Huang, D., Zhang, J., & An, S. (2019). Synthesis and degradation kinetics of TiO2/GO composites with highly efficient activity for adsorption and photocatalytic degradation of MB. Scientific Reports, 9(1), 1-9.

Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., & Yang, P. (2006). Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110(2), 179-190.

Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., Hong, F., Yang, P., (2007). The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biological Trace Element Research, 119(1), 77–88.

Yaqoob, S., Ullah, F., Mehmood, S., Mahmood, T., Ullah, M., Khattak, A., Zeb, M.A., (2018). Effect of waste water treated with tio2 nanoparticles on early seedling growth of zea mays L. Journal of Water Reuse and Desalination. 8, 424–431.

Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104(1), 83-91.

Downloads

Published

2022-11-30

How to Cite

Gupta, K., Malek, N. A. N. N., & Chundawat, T. S. (2022). Nanopriming Technology for Boosting Germination of Capsicum annum using Mycosynthesized TiO2 Nanoparticles. Journal of Materials in Life Sciences (JOMALISC), 1(1), 57–66. https://doi.org/10.11113/jomalisc.v1.6

Issue

Section

Articles