Subacute PVC Microplastic Inhalation Alters the Complete Blood Count Profile

Authors

  • Hikmawan Wahyu Sulistomo Department of Pharmacology, Faculty of Medicine, Brawijaya University, Indonesia https://orcid.org/0000-0002-5343-6428
  • Dewi Azar Nuria Wardani Midwifery Undergraduate Programs, Faculty of Medicine, Brawijaya University, Indonesia
  • Kharisma Ciptaning Gusti Midwifery Undergraduate Programs, Faculty of Medicine, Brawijaya University, Indonesia
  • Muhammad Reva Aditya Biomedical Science Master Program, Faculty of Medicine, Brawijaya University, Indonesia
  • Athaya Rahmanardi Muhammad Biomedical Science Master Program, Faculty of Medicine, Brawijaya University, Indonesia
  • Holipah Holipah Department of Public Health, Faculty of Medicine, Brawijaya University, Indonesia

DOI:

https://doi.org/10.11113/jomalisc.v3.72

Keywords:

Polyvinyl chloride, microplastic, inhalation, blood

Abstract

Plastics are used in a wide range of items worldwide. With the increased usage of plastics, concerns about environmental contamination and the body's exposure to plastics have increased. Microplastics have been found in the atmosphere, and breathing them in might cause a risk to our health. One plastic polymer type commonly used is Polyvinyl Chloride (PVC). However, the harmful consequences of inhaling PVC microplastics are not well known. This study aims to determine the effects of inhaling PVC microplastics on female Wistar rats' blood cells. We exposed PVC microplastics to female Wistar rats via the whole-body inhalation method for 28 days. At the end of the study, we analyzed morphology and completed blood count tests such as erythrocyte count, erythrocyte index, leukocyte count, leukocyte differential count, and thrombocyte count. We discovered that sub-acute exposure to PVC microplastics increases the number of erythrocytes and hemoglobin levels without causing morphology alteration. PVC microplastics groups showed leukopenia consistent with an increment of inflammatory marker neutrophil/ leukocyte ratio. PVC microplastic groups also showed a rise in thrombocyte counts. These results could provide data for understanding Microplastics inhalation's toxicity and health risks, especially in the blood.

References

Huang, D., Xu, Y., Lei, F., Yu, X., Ouyang, Z., Chen, Y., ... & Zhang, J. (2021). Degradation of polyethylene plastic in soil and effects on microbial community composition. Journal of Hazardous Materials, 416, 126173. https://doi.org/10.1016/j.jhazmat.2021.126173

Jasinski, J., Völkl, M., Wilde, M. V., Jérôme, V., Fröhlich, T., Freitag, R., ... & Becker, M. (2024). Influence of the polymer type of a microplastic challenge on the reaction of murine cells. Journal of Hazardous Materials, 465, 133280. https://doi.org/10.1016/j.jhazmat.2023.133280

Yin, K., Wang, Y., Zhao, H., Wang, D., Guo, M., Mu, M., ... & Wang, Y. (2021). A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive, and nervous systems. Science of the Total Environment, 774, 145758.https://doi.org/10.1016/j.scitotenv.2021.145758

Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate, and environmental impact during their use, disposal, and recycling. Journal of Hazardous Materials, 344, 179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014

Enyoh, C. E., Shafea, L., Verla, A. W., Verla, E. N., Qingyue, W., & Chowdhury, T. (2020). Microplastics exposure routes and toxicity studies to ecosystems: An overview. Environmental Analysis Health and Toxicology, 35, e2020004. https://doi.org/10.5620/eaht.e2020004

Evode, N., Qamar, S. A., Bilal, M., Barceló, D., & Iqbal, H. M. N. (2021). Plastic waste and its management strategies for environmental sustainability. Case Studies in Chemical and Environmental Engineering, 4, 100142. https://doi.org/10.1016/j.cscee.2021.100142

Cary, C. M., Seymore, T. N., Singh, D., Vayas, K. N., Goedken, M. J., Adams, S., ... & Stapleton, P. A. (2023). Single inhalation exposure to polyamide micro and nanoplastic particles impairs vascular dilation without generating pulmonary inflammation in virgin female Sprague Dawley rats. Particle and Fibre Toxicology, 20, 25. https://doi.org/10.1186/s12989-023-00525-x

Seymore, T. N., Rivera-Núñez, Z., Stapleton, P. A., & Barrett, E. S. (2022). Phthalate exposures and placental health in animal models and humans: A systematic review. Toxicological Sciences, 188(1), 153–179. https://doi.org/10.1093/toxsci/kfac060

Azad, P., Villafuerte, F. C., Bermudez, D., Patel, G., & Haddad, G. G. (2021). Protective role of estrogen against excessive erythrocytosis in Monge’s disease. Experimental & Molecular Medicine, 53(1), 125–135. https://doi.org/10.1038/s12276-020-00550-2

Lang, T. J. (2004). Estrogen as an immunomodulator. Clinical Immunology, 113(3), 224–230. https://doi.org/10.1016/j.clim.2004.05.011

Rosendaal, F. R., van Hylckama Vlieg, A., Tanis, B. C., & Helmerhorst, F. M. (2003). Estrogens, progestogens, and thrombosis. Journal of Thrombosis and Haemostasis, 1(7), 1371–1380. https://doi.org/10.1046/j.1538-7836.2003.00264.x

Wu, D., Feng, Y., Wang, R., Jiang, J., Guan, Q., Yang, X., ... & Liu, X. (2023). Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence. Journal of Advanced Research, 49, 141–150. https://doi.org/10.1016/j.jare.2022.09.004

Yong, C. Q. Y., Valiyaveettil, S., & Tang, B. L. (2020). Toxicity of microplastics and nanoplastics in mammalian systems. International Journal of Environmental Research and Public Health, 17(15), 51509. https://doi.org/10.3390/ijerph17051509

Iheanacho, S. C., & Odo, G. E. (2020). Neurotoxicity, oxidative stress biomarkers, and haematological responses in African catfish (Clarias gariepinus) exposed to polyvinyl chloride microparticles. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 232, 108741. https://doi.org/10.1016/j.cbpc.2020.108741

Abdel-Zaher, S., Mohamed, M. S., & Sayed, A. E. D. H. (2023). Hemotoxic effects of polyethylene microplastics on mice. Frontiers in Physiology, 14, 1072797. https://doi.org/10.3389/fphys.2023.1072797

Ajayi, A. F., & Akhigbe, R. E. (2020). Staging of the estrous cycle and induction of estrus in experimental rodents: An update. Fertility Research and Practice, 6, 5. https://doi.org/10.1186/s40738-020-00074-3

Trembley, J. H., So, S. W., Nixon, J. P., Bowdridge, E. C., Garner, K. L., Griffith, J., ... & Bhattacharya, R. (2022). Whole-body inhalation of nano-sized carbon black: A surrogate model of military burn pit exposure. BMC Research Notes, 15, 198. https://doi.org/10.1186/s13104-022-06165-2

Kania, N., Mayangsari, E., Setiawan, B., Nugrahenny, D., Tony, F., Wahyuni, E. S., ... & Suryani, Y. (2013). The effects of Eucheuma cottonii on signaling pathway inducing mucin synthesis in rat lungs chronically exposed to particulate matter 10 (PM10) coal dust. Journal of Toxicology, 2013, 528146. https://doi.org/10.1155/2013/528146

Sridharan, S., Kumar, M., Singh, L., Bolan, N. S., & Saha, M. (2021). Microplastics as an emerging source of particulate air pollution: A critical review. Journal of Hazardous Materials, 418, 126245. https://doi.org/10.1016/j.jhazmat.2021.126245

Kim, E. H., Choi, S., Kim, D., Park, H. J., Bian, Y., Choi, S. H., ... & Park, J. (2022). Amine-modified nanoplastics promote the procoagulant activation of isolated human red blood cells and thrombus formation in rats. Particle and Fibre Toxicology, 19, 60. https://doi.org/10.1186/s12989-022-00500-y

Kothari, M., Reddy, H., Kumar, S., Babariya, H., & Nehete, T. (2024). A sting in the tale: Spurious erythrocytosis following bee stings mimicking Gaisböck’s syndrome. Cureus, 16(3), e68255. https://doi.org/10.7759/cureus.68255

Song, M., Graubard, B. I., Rabkin, C. S., & Engels, E. A. (2021). Neutrophil-to-lymphocyte ratio and mortality in the United States general population. Scientific Reports, 11, 464. https://doi.org/10.1038/s41598-020-79431-7

Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702, 134455. https://doi.org/10.1016/j.scitotenv.2019.134455

Farhat, S. C. L., Silva, C. A., Orione, M. A. M., Campos, L. M. A., Sallum, A. M. E., & Braga, A. L. F. (2011). Air pollution in autoimmune rheumatic diseases: A review. Autoimmunity Reviews, 11(1), 14–21. https://doi.org/10.1016/j.autrev.2011.06.008

Danso, I. K., Woo, J. H., & Lee, K. (2022). Pulmonary toxicity of polystyrene, polypropylene, and polyvinyl chloride microplastics in mice. Molecules, 27(22), 7926. https://doi.org/10.3390/molecules27227926

Studnicka, M. J., Menzinger, G., Drlicek, M., Maruna, H., & Neumann, M. G. (1995). Pneumoconiosis and systemic sclerosis following 10 years of exposure to polyvinyl chloride dust. Thorax, 50(5), 583–585. https://doi.org/10.1136/thx.50.5.583

Gao, N., Huang, Z., Xing, J., Zhang, S., & Hou, J. (2021). Impact and molecular mechanism of microplastics on zebrafish in the presence and absence of copper nanoparticles. Frontiers in Marine Science, 8, 1024.

Lett, Z., Hall, A., Skidmore, S., & Alves, N. J. (2021). Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system. Environmental Pollution, 291, 118190. https://doi.org/10.1016/j.envpol.2021.118190

Christodoulides, A., Hall, A., & Alves, N. J. (2023). Exploring microplastic impact on whole blood clotting dynamics utilizing thromboelastography. Frontiers in Public Health, 11, 1215817. https://doi.org/10.3389/fpubh.2023.1215817

Downloads

Published

2024-11-30

How to Cite

Sulistomo, H. W., Wardani, D. A. N., Gusti, K. C., Aditya, M. R., Muhammad, A. R., & Holipah, H. (2024). Subacute PVC Microplastic Inhalation Alters the Complete Blood Count Profile. Journal of Materials in Life Sciences (JOMALISC), 3(2), 1–7. https://doi.org/10.11113/jomalisc.v3.72

Issue

Section

Articles