Green Synthesis of Magnesium Oxide Nanoparticles using Asystasia gangetica and its Antibacterial Study Against Gram-Positive and Gram-Negative Bacteria

Authors

  • Nur Aida Fatimah Mashri Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia & Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • Muhammad Amir Akhtar Mohd Azizul Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Hanis Mohd Yusoff Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia & Advanced Nano Materials (AnoMa) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Nurhanna Badar Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia & Advanced Nano Materials (AnoMa) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Siti Nor Khadijah Addis Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Nik Ahmad Nizam Nik Malek Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia & Centre for Sustainable Nanomaterials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Keywords:

MgO-NPs, green synthesis, nanoparticles, antibacterial activity

Abstract

Magnesium oxide nanoparticles (MgO-NPs) have various potential in medicine, catalysis and electronics due to their tailored properties on side and shape. it is important to obtain MgO-NPs by using green synthesis approach through the utilization of various parts of plants, such as the aloe vera plant, rambutan seeds, and clove flower, in synthesizing MgO-NPs. In this study, MgO-NPs are produced using Asystasia gangetica plant extract via the green combustion method. Characterization involves Thermal Gravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), UV-Vis Spectroscopy (UV-Vis), and Accelerated Surface Area and Porosimetry (ASAP). TGA results reveal that MgO achieves its stability around 650 °C, leading to the determination of the calcination temperatures at 700 °C and 800 °C. FTIR analysis reveals Mg-O stretching (670 cm-1 to 700 cm-1). XRD and SEM show high crystalline MgO-NPs with particle sizes of about 149 - 298 nm. ASAP indicates mesoporous characteristics with plate-like pores. Antibacterial activities were evaluated through a well diffusion method using Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. Antibacterial activity against Staphylococcus aureus is significant at concentrations of 500 mg/mL for MgO-NPs calcined at 800 °C, while no significant activity is observed against Escherichia coli. The promising results of green synthesis have high potential for further study.

References

Ansari, A., Ali, A., Asif, M., & Shamsuzzaman, M. (2017). Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. New Journal of Chemistry, 42(1), 184–197. https://doi.org/10.1039/C7NJ03742B

Ashok, K. S., Jarvin, M., Sharma, S., Umar, A., Inbanathan, S. S. R., & Nayak, A. K. (2021). Facile and green synthesis of MgO nanoparticles for the degradation of Victoria Blue dye under UV irradiation and their antibacterial activity. ES Food and Agroforestry, 5, 14–19. https://doi.org/10.30919/ESFAF519

Baig, N., Kammakakam, I., Falath, W., & Kammakakam, I. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871. https://doi.org/10.1039/D0MA00807A

Saidi, N. S. M., Ying, K. J., Yusoff, H. M., & Badar, N. (2023). Synthesis and characterization of magnesium oxide nanoparticles by using banana peel (Musa Acuminata Cavendish) extract. Malaysian Journal of Analytical Sciences, 27(5), 1017–1034.

Saidi, N. S. M., Badar, N., Yusoff, H. M., & Elong, K. (2024). Effect of Zn, Ti, and Sn dopants on the structural, morphological, and optical properties of MgO nanoparticles synthesized via green combustion using Persicaria odorata leaves extract. Emergent Materials. https://doi.org/10.1007/s42247-024-00871-2

Farizan, A. F., Yusoff, H. M., Badar, N., Bhat, I. U. H., Anwar, S. J., Wai, C. P., Asari, A., Kasim, M. F., & Elong, K. (2022). Green synthesis of magnesium oxide nanoparticles using Mariposa christia vespertilionis leaves extract and its antimicrobial study toward S. aureus and E. coli. Arabian Journal for Science and Engineering, 48(6), 7373–7386. https://doi.org/10.1007/S13369-022-07282-7

Yusoff, H. M., Rafit, F. A., Mohamad, F. I., Hassan, N., & Daud, A. I. (2017). The effects of calcination temperatures in the synthesis of nanocrystalline magnesium oxide via sol-gel technique. Applied Mechanics and Materials, 865, 36–42. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.865.36

Idris, N. A., Aziz, N. A. A., Yusoff, H. M., Badar, N., Elong, K., Yusoff, F., Wai, C. P., & Hassan, N. (2023). Electrochemical performance of zinc oxide nanoparticles prepared via green synthesis route using Chromolaena odorata leaves extract as potential anode material in sodium-ion battery. Journal of Sustainability Science and Management, 18(10), 126–137. http://doi.org/10.46754/jssm.2023.10.008

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71. https://doi.org/10.1016/J.JPHA.2015.11.005

Rotti, R. B., Sunitha, D. V., Manjunath, R., Roy, A., Mayegowda, S. B., Gnanaprakash, A. P., Alghamdi, S., Almehmadi, M., Abdulaziz, O., Allahyani, M., Aljuaid, A., Alsaiari, A. A., Ashgar, S. S., Babalghith, A. O., Abd El-Lateef, A. E., & Khidir, E. B. (2023). Green synthesis of MgO nanoparticles and its antibacterial properties. Frontiers in Chemistry, 11. https://doi.org/10.3389/FCHEM.2023.1143614

Mugabo, P., & Raji, I. A. (2013). Effects of aqueous leaf extract of Asystasia gangetica on the blood pressure and heart rate in male spontaneously hypertensive Wistar rats. BMC Complementary and Alternative Medicine, 13, 283. https://doi.org/10.1186/1472-6882-13-283

Pradita, T., Shih, S. J., Aji, B. B., & Sudibyo. (2017). Synthesis of MgO powder from magnesium nitrate using spray pyrolysis. AIP Conference Proceedings, 1823. https://doi.org/10.1063/1.4978089

Khdary, N. H., Seddiq, W. K., Alkurdi, M. E., Alyamani, E. J., ALangari, A. A., & Aly-amani, E. J. (2019). Enhance the antimicrobial activity of silver nanoparticles by manipulating a redox process and controlling the size of the particles. Biomedical Journal of Scientific & Technical Research, 16(4), 1–9. https://doi.org/10.26717/BJSTR.2019.15.002882

Thill, A. (2016). Characterisation of imogolite by microscopic and spectroscopic methods. Developments in Clay Science, 7, 223–253. https://doi.org/10.1016/B978-0-08-100293-3.00010-8

Mamatha, K. M., Srinivasa Murthy, V., Ravikumar, C. R., Murthy, H. C. A., Kumar, V. G. D., Kumar, A. N., & Jahagirdar, A. A. (2022). Facile green synthesis of molybdenum oxide nanoparticles using Centella Asiatica plant: Its photocatalytic and electrochemical lead sensor applications. Sensors International, 3, 100153. https://doi.org/10.1016/J.SINTL.2021.100153

Zhang, L., Wu, P., Chen, H., Yuan, L., Yang, G., Xie, H., Liang, D., Xie, J., Deng, L., & Al, -. (2019). Effect of calcination temperature on visible near-infrared reflectance of aluminum-doped chromium. https://doi.org/10.1016/j.mssp.2019.104672

Chan, Y. B., Selvanathan, V., Tey, L. H., Akhtaruzzaman, M., Anur, F. H., Djearamane, S., Watanabe, A., & Aminuzzaman, M. (2022). Effect of calcination temperature on structural, morphological, and optical properties of copper oxide nanostructures derived from Garcinia mangostana L. leaf extract. Nanomaterials, 12(20). https://doi.org/10.3390/NANO12203589

Koroth, S. K., Saji, A., Chanda, A., & Vasundhara, M. (2022). Effects of calcination temperatures on structural, optical, and magnetic properties of MgO nanoflakes and its photocatalytic applications. Optical Materials, 132. https://doi.org/10.1016/J.OPTMAT.2022.112777

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/PAC-2014-1117

Huang, L., Yang, Z., & Wang, S. (2020). Influence of calcination temperature on the structure and hydration of MgO. Construction and Building Materials, 262, 120776. https://doi.org/10.1016/J.CONBUILDMAT.2020.120776

Kauffmann, A. C., & Castro, V. S. (2023). Phenolic compounds in bacterial inactivation: A perspective from Brazil. Antibiotics, 12(4). https://doi.org/10.3390/ANTIBIOTICS12040645

Kuo, Y.-C., Lin, S.-P., Lin, C.-W., Tsai, Y.-C., Wu, T.-S., & Hsiao, I.-L. (2023). Enhanced antibacterial activity in cellulose acetate films with surface defect-rich MgO nanoparticles for sustainable active packaging applications. ACS Applied Nano Materials, 6(21), 19915–19925. https://doi.org/10.1021/ACSANM.3C03724

Basir, O. H., Zaid, N. A., Mohd Fauzi, N. A., & Razak, A. H. (2020). Characterization of Asystasia gangetica and Phyllanthus niruri extracts: Total phenolic content, antioxidant and antibacterial activities. Journal of Sustainable Nature Resources. https://doi.org/10.30880/jsunr.2020.01.02.006

Downloads

Published

2024-12-30

How to Cite

Mashri, N. A. F., Mohd Azizul, M. A. A., Mohd Yusoff, H., Badar, N., Addis, S. N. K., & Nik Malek, N. A. N. (2024). Green Synthesis of Magnesium Oxide Nanoparticles using Asystasia gangetica and its Antibacterial Study Against Gram-Positive and Gram-Negative Bacteria. Journal of Materials in Life Sciences (JOMALISC), 3(2), 88–100. Retrieved from https://jomalisc.utm.my/index.php/jomalisc/article/view/82

Issue

Section

Articles