Investigation Of Nonlinear Optical (NLO) Response Of Metal Complexes via Quantitative Structure-Activity Relationship (QSAR) Method

Authors

  • Fazira Ilyana Abdul Razak Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Suhaila Sapari School of Chemical and Energy Engineering, University Technology Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia.
  • Yee Shi Wee Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Lee Yang Ning Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jomalisc.v4.102

Keywords:

QSAR, Nonlinear optics, metal variation, DFT, FTIR, NMR, optimization

Abstract

Quantitative structure–activity relationship (QSAR) models establish a quantitative link between the chemical structure of compounds and their activity, providing insight into how specific fragments or sub-structures influence properties. Nonlinear optics (NLO) studies phenomena arising from changes in a material’s optical characteristics under light, where interactions can produce new optical fields with altered phase, frequency, amplitude, polarization, or propagation path. Experimental development of NLO materials is often costly and time-consuming, requiring multiple procedural steps. Computational approaches such as QSAR can predict the NLO potential of compounds more efficiently, reducing the need for extensive experimentation. In this study, nine metal complexes were geometrically optimized using Gaussian16 and analyzed via QSAR. Structure 4 was the most stable, with the lowest optimization energy of –0.7132 a.u., while Structure 6 had the lowest band gap energy of 0.16354 eV. Structure 2 exhibited the highest dipole moment (11.85 D), and Structure 5 showed the lowest (0.00 D). QSAR analysis revealed that band gap energy contributed most significantly to the NLO response of these metal complexes, with an R² value of 0.445. These results highlight the potential of computational QSAR as an effective tool for predicting NLO behavior in metal complexes. Further research is necessary to improve prediction accuracy and to deepen understanding of structure–property relationships in NLO materials.

References

Alsberg, B. K., Popelier, P. L. A., & O’Brien, J. P. (2000). Topological analysis of electron density in molecular systems. Journal of Computational Chemistry, 21(4), 345–355.

Astrand, M., Fliegl, H., & Hatting, K. (2000). Quantum chemical calculations on azobenzene excitation energies. Chemical Physics Letters, 320(1–2), 1–6.

Astrand, M., Fliegl, H., & Hatting, K. (2001). Orbital analysis of π → π* transitions in azobenzene. Journal of Molecular Structure: THEOCHEM, 540(1–3), 1–10.

Baba, A., Smith, R., & Jones, T. (2012). Semi-empirical calculations for large molecular systems: Trends and applications. Computational and Theoretical Chemistry, 990, 45–53.

Berhanu, T., Karelson, M., Peterson, C., Shim, J., MacKerell, A., & Musafia, B. (2012). Design of nonlinear optical chromophores using QSAR. Journal of Molecular Modeling, 18(4), 1531–1542.

Berhanu, W., Alemayehu, T., & Mengistu, M. (2012). Z-scan studies of nonlinear optical responses in organic and metal-organic systems. Optics Communications, 285(16–17), 3130–3136.

Buttingsrud, B., Eich, M., & Natansohn, A. (2007). Azobenzene derivatives in photonic systems: QSAR studies. Journal of Photochemistry and Photobiology A: Chemistry, 186(2–3), 156–165.

Buttingsrud, B., Shkrob, I., & Meisel, D. (2007). Structure–property relationships in azobenzene derivatives: Hyperpolarizabilities and electronic properties. Journal of Physical Chemistry A, 111(30), 7509–7517.

Chen, Z., Zhou, X., Li, Z., Niu, L., Yi, J., & Zhang, F. (2011). The third-order optical nonlinearities of thiophene-bearing

phthalocyanines studied by Z-scan technique. Journal of Photochemistry and Photobiology A: Chemistry, 218(1), 64.

Cronin, M. T. D. (2009). Quantitative structure–activity relationships (QSARs) for chemical toxicity prediction. Chemical Society Reviews, 38(6), 1731–1748.

Dhanuskodi, S., Sabari Girisun, T., & Vinitha, S. (2011). Optical limiting behavior of certain thiourea metal complexes under

CW laser excitation. Current Applied Physics, 11(3), 860.

Dudek, A., Gedeck, P., & Leszczynski, J. (2006). Chemometric tools in QSAR analysis of optical properties. Chemometrics and Intelligent Laboratory Systems, 81(2), 107–116.

Eich, M., Wiesner, U., & Natansohn, A. (1987). Optical switching in azobenzene polymers. Macromolecules, 20(12), 2975–2980.

Hagar, M., Morley, C., & Shuto, T. (2016). Applications of nonlinear optical materials. Advanced Optical Materials, 4(6), 982–996.

Hansch, C., Hoekman, D., & Leo, A. (1991). Quantitative structure–activity relationships in chemistry. Chemical Reviews, 91(5), 165–215.

Kamal, M., et al. (2019). Influence of conjugation and aromaticity on the nonlinear optical properties of metal complexes. Journal of Molecular Structure, 1195, 654–664.

Karelson, M. (2000). Predictive QSAR modeling in NLO materials. Journal of Molecular Modeling, 6(1), 1–14.

Kumar, R. S. S., Rao, S. V., Giribabu, L., & Rao, D. N. (2007). Femtosecond and nanosecond nonlinear optical properties

of alkyl phthalocyanines studied using Z-scan technique. Chemical Physics Letters, 447(4–6), 274.

Liyanage, N. P., Perera, R., & Fernando, S. (2003). Quantum chemical calculations of nonlinear optical properties. Chemical Physics Letters, 378, 42–48.

Luan, X., Peterson, C., & Musafia, B. (2012). QSPR modeling of second-order nonlinear optical chromophores. Journal of Molecular Graphics and Modelling, 38, 60–68.

Maldonado, M., da Silva Neto, M. L., Vianna, P. G., Ribeiro, H. B., Gordo, V. O., Carvalho, I. C. S., de S. Menezes, L., de

Araújo, C. B., de Matos, C. J. S., Seixas, L., Jawaid, A. M., Busch, R., Ritter, A. J., Vaia, R. A., & Gomes, A. S. L. (2020). Femtosecond Nonlinear Optical Properties of 2D Metallic NbS2 in the Near Infrared. The Journal of Physical Chemistry C, 124(28), 15425.

Musafia, B., & Senderowitz, H. (2010). Theoretical prediction of nonlinear optical properties of chromophores. Journal of Physical Chemistry A, 114(6), 2023–2032.

Najim, A., Bajjou, O., Boulghallat, M., Rahmani, K., & Moulaoui, L. (2022). DFT study on electronic and optical properties of graphene under an external electric field. E3S Web of Conferences, 234, 00006.

Natansohn, A., Wiesner, U., & Eich, M. (1992). Azobenzene-based photonic systems. Macromolecules, 25(12), 3278–3284.

Peterson, J. A., et al. (2009). Metal effect on second-order nonlinear optical properties of organometallic complexes. Inorganic Chemistry, 48, 11835–11844.

Thilak, T., Ahamed, M. B., & Vinitha, G. (2013). Third order nonlinear optical properties of potassium dichromate single crystals by Z-scan technique. Optik, 124(21), 4716

Wiesner, U., Natansohn, A., & Eich, M. (1990). Optical data storage using azobenzenes. Macromolecules, 23(15), 3890–3896.

Downloads

Published

2025-11-30

How to Cite

Abdul Razak, F. I., Sapari, S., Yee Shi Wee, & Lee Yang Ning. (2025). Investigation Of Nonlinear Optical (NLO) Response Of Metal Complexes via Quantitative Structure-Activity Relationship (QSAR) Method. Journal of Materials in Life Sciences , 4(2), 49–60. https://doi.org/10.11113/jomalisc.v4.102

Issue

Section

Articles