Phytochemical Attributes and Pharmacological Activities of Genus Leucas: A Mini Review

Authors

  • Muhammad Luqman Selahuddeen Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Noor Aida Fazira Mohd Salleh Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Fui Lin Lee Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hemagirri Manisekaran Department of Biosciences, Faculty of Science, 81310 Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor
  • Marouane Dhia Eddine Bouguerra Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2A, 33100 Udine, Italy
  • Wan Nur Aqilah Wan Mohd Samsudin Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siti Ernieyanti Hashim Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Roswanira Abdul Wahab Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Abdul Fatah A. Samad Department of Biosciences, Faculty of Science, 81310 Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor
  • Faizuan Abdullah Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jomalisc.v3.40

Keywords:

Leucas Genus, medicinal plant, phytochemical study, pharmacological activities, ethno botanical

Abstract

The genus Leucas is among the plethora of ethnobotanical species with promising applications in traditional medicines to treat different ailments. Despite extensive studies on the Leucas genus, the focus has largely been on their ethnobotanical importance alongside a modest number of studies on their phytochemical- or pharmacological attributes, including but not limited to antibacterial, anti-inflammatory and anthelmintic. In this review, phytochemical data alongside pharmacological activities of several notable species in the Leucas genus are compiled. The review focuses on the chemical constituents and essential oils that several species from this genus produce. Previous studies on the prominent species of this genus reported the presence of many beneficial chemical constituents, such as flavonoids, phenols, tannins, and alkaloids, that are substantial to the genus's pharmacological activities. However, these studies are preliminary in the sense that the proven in vitro activities are not further studied on the molecular level, efficacy, toxicity, and clinical levels. Insight into the pharmacological activities are discussed in this review: anthelmintic, anti-microbial, anti-inflammatory, antioxidant, anti-diarrheal, anti-diabetic, and anti-nociceptive alongside hepato-protective activities. The lack of extensive in vivo studies but the immense medicinal potential is viewed as an opportunity for further studies on the genus.

References

Abdullah, F., Nasir, S. N. A. M., Han, D. K., Appalasamy, S., Nor, M. M., & Rak, A. E. (2019). Potential of Leucas zeylanica extract to eliminate E. coli and S. aureus in Corbicula fluminea (“Etak”) tissue. Malaysian Journal of Fundamental and Applied Sciences, 15(4), 597-599.

Agra, M. D. F., Freitas, P. F. D., & Barbosa-Filho, J. M. (2007). Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. Revista Brasileira de Farmacognosia, 17, 114-140.

Al Yousuf, M. H., Bashir, A. K., Blunden, G., Yang, M. H., & Patel, A. V. (1999). Coumarleucasin and Leucasone from Leucas inflata Roots. Phytochemistry, 95–98.

Annapandian, V. M., & Rajagopal, S. S. (2017). Phytochemical evaluation and in vitro antioxidant activity of various solvent extracts of Leucas aspera (Willd.) Link leaves. Free Radicals and Antioxidants, 7(2), 166-171.

Babu, A., Mohamed, M. S. N., Jaikumar, K., Anand, D., & Saravanan, P. (2016). In-vitro antifungal activity of leaf extracts of Leucas aspera and Leucas zeylanica. International Journal of Pharmaceutical Sciences and Research, 7(2), 752.

Babu, N., Singh, A., & Singh, R. (2018). Therapeutics potential and pharmacological properties of Leucas indica: A review. The Pharma Innovation, 7(7), 564–568.

Bais, B., & Saiju, P. (2014). Ameliorative effect of Leucas cephalotes extract on isoniazid and rifampicin induced hepatotoxicity. Asian Pacific Journal of Tropical Biomedicine, 4, S633-S638.

Begum, P., Wang, Y., & Fugetsu, B., (2015). Biologically active compounds from Leucas lavandulaefolia. International Journal of Pharmaceutical Sciences and Research, 6, 1013-1021.

Behl, T., Kumar, K., Brisc, C., Rus, M., Nistor-Cseppento, D.C., Bustea, C., Aron, R.A.C., Pantis, C., Zengin, G., Sehgal, A. and Kaur, R. (2021). Exploring the multifocal role of phytochemicals as immunomodulators. Biomedicine & Pharmacotherapy, 133, 110959.

Chen, G. Y., Zhang, B., Zhao, T., Nidhal, N., Jia-Li, W., Zhou, X. M., & Chun-Yan, D. (2020). A new triterpenoid glucoside from Leucas zeylanica. Natural product research, 34(13), 1874-1878.

Chinchansure, A. A., Arkile, M., Shukla, A., Shanmugam, D., Sarkar, D., & Joshi, S. P. (2015). Leucas mollissima, a source of bioactive compounds with antimalarial and antimycobacterium activities. Planta Medica Letters, 2(01), e35-e38.

Chouhan, H. S., & Singh, S. K. (2011). A review of plants of genus Leucas. Journal of Pharmacognosy and Phytotherapy, 3(3), 13-26.

Dixit, V., Verma, P., Agnihotri, P., Paliwal, A. K., Rao, C. V., & Husain, T. (2015). Antimicrobial, antioxidant and wound healing properties of Leucas lanata Wall. ex Benth. The Journal of Phytopharmacology, 4(1), 9-16.

Fernandez-Conradi, P., Castagneyrol, B., Jactel, H., & Rasmann, S. (2021). Combining phytochemicals and multitrophic interactions to control forest insect pests. Current Opinion in Insect Science, 44, 101-106.

Ghasemian, M., Owlia, S., & Owlia, M. B. (2016). Review of anti-inflammatory herbal medicines. Advances in Pharmacological and Pharmaceutical Sciences, 2016.

Gowrish, A., Vagdevi, H. M., & Rajashekar, H. (2016). Phytochemical screening and antimicrobial activity of Leucas marrubioides desf. root extracts. Int J Pharm Pharm Sci, 8(12), 209–12.

Gowrish, A., Vagdevi, H. M., & Rajashekar, H. (2015). In vitro antioxidant and antitubercular activity of Leucas marrubioides desf. root extracts. J. Appl. Pharm. Sci. 5, 137–142.

Harley, R.M., Atkins, S., Budantsev, A.L., Cantino, P.D., Conn, B.J., Grayer, R., Harley, M.M., De Kok, R.D., Krestovskaja, T.D., Morales, R. and Paton, A.J. (2004). Labiatae. In Flowering plants· Dicotyledons: Lamiales (except Acanthaceae including Avicenniaceae) (pp. 167-275). Berlin, Heidelberg: Springer Berlin Heidelberg.

Hasan, M., Burdi, D. K., Ahmad, V. U. (1991). Leucasin, A Triterpene Saponin from Leucas nutans. Phytochemistry, 4181-4183

Hase, J., Bharati, G., Deshmukh, K., Phatangre, K., Rahane, N., & Dokhe Shital, A. (2016). Synthesis and characterization of Cu nanoparticles of L plant. EJPMR, 3, 241-242.

Hashem, M. M., Salama, M. M., Mohammed, F. F., Tohamy, A. F., & El Deeb, K. S. (2019). Metabolic profile and hepatoprotective effect of Aeschynomene elaphroxylon (Guill. & Perr.). PloS one, 14(1), e0210576.

Hossain, S., Rahman, M., Fatima, N., Haque, M., & Islam, J. (2013). Leucas zeylanica (L.) R. Br. protects ethanol and hydrogen peroxide-induced oxidative stress on hepatic tissue of rats. International Current Pharmaceutical Journal, 2(9), 148–151.

Hung, N.H., Thi Hong Chuong, N., Satyal, P., Hieu, H.V., Dai, D.N., Huong, L.T., Sinh, L.H., Thi Bich Ngoc, N., Hien, V.T. & Setzer, W.N. (2019). Mosquito larvicidal activities and chemical compositions of the essential oils of Leucas zeylanica growing wild in Vietnam. Natural Product Communications, 14(6), 1934578X19842675.

Islam, A., Hussain, M.S., Sen, N., Abedin, F., Millat, M.S., Islam, M.S., Das, A., Kar, A. and Hossain, M.M. (2017). Investigation of in vitro thrombolytic and anti-helminthic activity and in vivo anxiolytic and antidepressant potentiality with phytochemical nature of methanolic extract of Leucas lavandulifolia. Sustainable Chemistry and Pharmacy, 6, 61-66.

Islam, G., Gahlot, K., Mani, M., Kumar, P., & Shukla, D. (2020). Hepatoprotective activity of Leucas cephalotes against paracetamol induced hepatotoxicity in rats. Research Journal of Pharmacy and Technology, 13(3), 1183-1186.

Jangra, P., Singh, J., & Singh, S. (2016). Antimicrobial activity of Leucas Cephalotes Spreng. International Journal of Pharmaceutical Sciences and Research, 7(7), 2984.

Jayaweera, D. M. A. (1980). Medicinal plants (indigenous and exotic) used in Ceylon, Part IV. The National Science Council of Sri Lanka, Colombo, 1982:52–53.

Joshi, R. K. (2016). Leucas aspera (Willd.) Link Essential oil from India: β-caryophyllene and 1-octen-3-ol chemotypes. Journal of Chromatographic Science, 54(3), 295–298.

Joshi, R. K. (2014). GC/MS analysis of the essential oil of Leucas indica from India. Natural Product Communications, 9(11), 1934578X1400901119.

Kalpana, V. N., & Rajeswari, V. D. (2016). Phytochemical and pharmacological investigation of an indigenous medicinal plant Leucas aspera. International Journal of PharmTech Research, 9(8), 2455-9563.

Kamble, S., & Rao, B. G. (2017). Effect of methanolic root extracts of ethnomedicinal plants on paracetamol induced hepatotoxicity in rats. Journal of Pharmaceutical Research, 63-67.

Katzung, G. B. (1992). Basic and clinical pharmacology. Appleton and Lange.

Kaur, R., & Kumar, N. (2016). Phytochemical composition and in vitro antioxidant activity of Leucas aspera leaves. Research Journal of Pharmacy and Technology, 9(12), 2217-2221.

Khalil, A. T., Gedara, S. R., Lahloub, M. F., & Halim, A. F. (1996). Diterpenes and a Ffavone from Leucas neufliseana. Phytochemistry, 1569-1571.

Khandelwal, K. (2008). Practical pharmacognosy. Pragati Books Pvt. Ltd.

Khare, C. P. (2007). Encyclopedia of Indian Medicinal Plants. New York, Berling.

Kulkarni, R. R., Shurpali, K., Puranik, V. G., Sarkar, D., & Joshi, S. P. (2013). Antimycobacterial Labdane Diterpenes from Leucas stelligera. Journal of Natural Products, 1836-1841.

Kumar G. V, & Devanna N. (2016). An Update of Leucas aspera – A Medicinal Plant. International Journal of Science Research Methodology, 485-503.

Madhu, G. C., Jaianand, K., Rameshkumar, K., Balaji, P., & Veeramanikandan, V. (2019). In-vivo studies on anti-diabetic potential of Leucas aspera in streptozotocin induced diabetic wistar albino rats. Journal of Drug Delivery and Therapeutics, 9(4-s), 105-110.

Manivannan, R. (2016). Isolation of apigenin-7-O-(6’’-OE-caffeoyl)-β-D-glucopyranoside from Leucas aspera L. with anti-inflammatory and wound healing activities. Journal of Pharmacy & Pharmacognosy Research, 4(2), 54-61.

Mannan, M. A. (2019). Evaluation of Antinociceptive Effects of Methanolic Extract of Leucas aspera Leaves in Mice. EC Pharmacology and Toxicology, 7, 1001-1012.

Meghashri, S., Kumar, H. V., & Gopal, S. (2010). Anti-oxidant Properties of A Novel Flavonoid from Leaves of Leucas aspera. Food Chemistry, 105–110.

Minja, M. M. J. (1999). The Maasai wonder plants. In Proceedings of the People and Plants Training Workshop held at the Tropical Pesticides Research Institute (TPRI) (pp. 15-18).

Misra, T. N., Singh, R. S., Prasad, C., & Singh, S. (1992). Two aliphatic ketols from Leucas aspera. Phytochemistry, 32(1), 199–201.

Moody, J. O., Gundidza, M., & Wyllie, G. (2006). Essential Oil Composition of Leucas milanjiana Guerke. Journal of Fragrance and Flavour, 872-874.

Mothana, R. A., Noman, O. M., Al-Sheddi, E. S., Khaled, J. M., Al-Said, M. S., & Al-Rehaily, A. J. (2017). Chemical composition, in vitro antimicrobial, free-radical-scavenging and antioxidant activities of the essential oil of Leucas inflata Benth. Molecules, 22(3), 367.

Mothana, R. A., Al-Said, M. S., Al-Yahya, M. A., Al-Rehaily, A. J., & Khaled, J. M. (2013). GC and GC/MS analysis of essential oil composition of the endemic Soqotraen Leucas virgata Balf. f. and its antimicrobial and antioxidant activities. International Journal of Molecular Sciences, 14(11), 23129–23139.

Nagarajan, S. K., Rani, V., Narayanasamy, A., & Masthan, M. K. (2019). Leucas aspera to Treat Pan Oral Disorders-An Experimental Study. Dental Journal.

Napagoda, M., Gerstmeier, J., Butschek, H., Lorenz, S., Kanatiwela Niriella, D., de Soyza, S., & Werz, O. (2018). Lipophilic Extracts of Leucas zeylanica, A Multi-purpose Medicinal Plant in The Tropics, Inhibit Key Enzymes Involved in Inflammation and Gout. Journal of Ethnopharmacology, 474-481.

Nidhal, N., Zhou, X. M., Chen, G., Zhang, B., Han, C., & Song, X. (2020). Chemical constituents of Leucas zeylanica and their chemotaxonomic significance. Biochemical systematics and ecology, 89, 104006.

Nipu, A. H., Akter, S., & Rahmatullah, M. (2017). Preliminary phytochemical screening and evaluation of antihyperglycemic and antinociceptive effects of a combination of Leucas aspera aerial parts and Zingiber officinale rhizomes. World J Pharm Pharm Sci, 6(8), 135-145.

Pandey P., Mehta R., & Upadhyay R. (2013). Physico-chemical and Preliminary Phytochemical Screening of Psoralea corylifolia, Archives of Applied Science Research, 261-265.

Patel, N. K., Khan, M. S., & Bhutani, K. K. (2015). Investigations on Leucas cephalotes (Roth.) Spreng. for inhibition of LPS-induced pro-inflammatory mediators in murine macrophages and in rat model. EXCLI journal, 14, 508.

Patil, K., Bagade, S., Sharma, S., & Hatware, K. (2019). Potential of herbal constituents as new natural leads against helminthiasis: A neglected tropical disease. Asian Pacific Journal of Tropical Medicine, 12(7), 291-299.

Pavunraj, M., Ramasubbu, G., & Baskar, K. (2017). Leucas aspera (Willd.) L.: Antibacterial, antifungal and mosquitocidal activities. Trends in Phytochemical Research, 1(3), 135–142.

Pradhan, B. P., Chakraborty, D. K., Subba, G. C. (1990). A Triterpenoid Lactone from Leucas aspera. Phytochemistry, 1693-1695.

Prasad, R., Bisht, L. S., Joshi, D., Nailwal, M. K., & Melkani, A. B. (2017). Chemical Composition and Antibacterial Activity of the Essential Oil from Whole Aerial Parts of Leucas mollissima Wall. ex Benth. Journal of Essential Oil Bearing Plants, 20(1), 141-147.

Priya, K. K., & Anuradha, V. (2019). A Novel Pyridyl Ester Isolated from Leucas cephalotes. Asian Journal of Chemistry, 31(10), 2410–2412.

Radhika, B., Srilekha, Chaitanya, Sandhya, & Saikrishna. (2018). Pharmacognostic and Preliminary Phytochemical Evaluation of the Leaves of Leucas zeylanica. International Journal of Biomedical Investigation, 1-5.

Rahman, S. M., Mony, T., Ahammed, K., Naher, S., Haque, M. R., & Jui, S. M. (2018). Qualitative phytochemical screening and evaluation of analgesic and antidiarrheal activity of ethanolic extract of Leucas cephalotes leaves. Journal of Pharmacognosy and Phytochemistry, 7(5), 1484-1492.

Rajesh, S. V., Gnanendra, T. S., & Kumar, T. S. (2021). Anti-inflammatory and molecular docking analysis of Leucas vestita wall. Ex. Benth. extract against cyclo-oxygenase-2. Prostaglandins & Other Lipid Mediators, 156, 106581.

Ramalingam, R., Nath, A. R., Madhavi, B. B., & Nagulu, M. (2013). Invitro free radical scavenging, cytotoxic and acetylcholinesterase inhibitory activities of Leucas martinicensis. International Journal of Chemical and Analytical Science, 4(2), 91-95.

Rupani, R., & Chavez, A. (2018). Medicinal plants with traditional use: Ethnobotany in the Indian subcontinent. Clinics in Dermatology, 36(3), 306-309.

Ryding O. (1998). Phylogeny of the Leucas Group (Lamiaceae). Systematic Botany, 23:235-47.

Sabri, G. U. L. N. A. A. Z., & Vimala, Y. (2018). Antibacterial and antioxidant activity of Leucas aspera flowers from Bihar, India. Asian J Pharm Clin Res, 11(2), 223-226.

Sadhu, S. K., Okuyama, E., Fujimoto, H., & Ishibashi, M. (2006). Diterpenes from Leucas aspera Inhibiting Prostaglandin-Induced Contractions. Journal of Natural Products, 988-994.

Saito, K. (2018). Development of Plant Metabolomics and Medicinal Plant Genomics. Yakugaku Zasshi-Journal Of The Pharmaceutical Society Of Japan, 138(1), 1-18.

Satyal, P., Paudel, P., Poudel, A., & Setzer, W. N. (2012). Microbiological activities of volatile constituents of Leucas aspera (Willd.) Link from Nepal. J. Nat. Pharm, 3(2), 118-119.

Scheen, A. C., & Albert, V. A. (2009). Molecular Phylogenetics of the Leucas Group (Lamioideae; Lamiaceae). Systematic Botany,173-181.

Shamsi-Baghbanan, H., Sharifian, A., Esmaeili, S., & Minaei, B. (2014). Hepatoprotective herbs, avicenna viewpoint. Iranian Red Crescent Medical Journal, 16(1).

Sharma, R., Garg, N., Verma, D., Rathi, P., Sharma, V., Kuca, K., & Prajapati, P. K. (2021). Indian medicinal plants as drug leads in neurodegenerative disorders. In Nutraceuticals in brain health and beyond (pp. 31-45). Academic Press.

Shukla, P. K., Misra, A., Srivastava, S., & Rawat, A. K. (2016). Reversed phase high-performance liquid chromatographic ultra-violet (photo diode array) quantification of oleanolic acid and its isomer ursolic acid for phytochemical comparison and pharmacological evaluation of four Leucas species used in ayurveda. Pharmacognosy Magazine, 12(Suppl 2), S159.

Spiegel, T. M. (1983). Practical rheumatology, Wiley, Medical Publication John Wiley and sons, USA, 161–163, 169-172 and 178-183.

Srivastava J, Lambert J, & Vietmeyer N. (1996). Medicinal Plants: An Expanding Role in Development. World Bank Technical Paper, 320.

Sunojkumar, P., & Mathew, P. (2008). South Indian Leucas: A Taxonomic Monograph. Centre for Research in Indigenous Knowledge Science and Culture, Calicut.

Tahareen, S., Shwetha, R., & Myrene, R. D. (2016). Potential antioxidant, anti inflammatory and antibacterial evaluation of extracts of Leucas aspera using in vitro models. International Journal of Pharmacy and Pharmaceutical Science, 8(11), 292-297.

Ugwah-Oguejiofor, C. J., Eze, U. A., Bello, S. O., Etuk, U., Ameh, I. & Ugwah, M. (2015). Anticonvulsant and Sedative Activities of Aqueous Leaf Extract of Leucas martinicensis (Jacq.) R. Br. Nigerian Journal of Basic and Applied Science, 87-91.

Verma, A., Kumar, A., Upreti, D. K., Pande, V., & Pal, M. (2017). Fatty acid profiling and In vitro antihyperglycemic effect of Leucas cephalotes (Roth) spreng via carbohydrate hydrolyzing enzyme inhibition. Pharmacognosy Magazine, 13(Suppl 1), S22.

Wu, P. S., Jeng, J., Yang, J. J., Kao, V., Yen, J. H., & Wu, M. J. (2020). Vernonia patula (Dryand.) Merr. and (Retz.) R. Brown exert anti-inflammatory activities and relieve oxidative stress via Nrf2 activation. Journal of Ethnopharmacology, 262, 113155.

Zahra, W., Rai, S.N., Birla, H., Singh, S.S., Rathore, A.S., Dilnashin, H., Keswani, C. and Singh, S.P. (2020). Economic importance of medicinal plants in Asian countries. Bioeconomy for sustainable development, 359-377.

Zhang, X., Gui, M., Zhang, C., Chen, C., Yu, L., & Liu, J. (2016). Leucasinoside: A new abietane diterpenoid glycoside from Leucas zeylanica. Records of Natural Products, 10(5), 645.

Zielinska S, Matkowski A. (2014). Phytochemistry and Bioactivity of Aromatic and Medicinal Plants from The Genus Agastache (Lamiaceae). Phytochemistry Reviews, 391–416.

Downloads

Published

2024-05-30

How to Cite

Selahuddeen, M. L., Mohd Salleh, N. A. F., Lee, F. L., Manisekaran, H., Bouguerra, M. D. E., Wan Mohd Samsudin, W. N. A., … Abdullah, F. (2024). Phytochemical Attributes and Pharmacological Activities of Genus Leucas: A Mini Review. Journal of Materials in Life Sciences (JOMALISC), 3(1), 58–74. https://doi.org/10.11113/jomalisc.v3.40

Issue

Section

Articles