Synthesis of Surface-Bound ZIF-8 Layers on Titania for the Photodegradation of Tetracycline

Authors

  • Nurhanis Khaliesah Mohamad Zamani Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nor Arbani Sean Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Sheela Chandren Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM, Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jomalisc.v4.109

Keywords:

Zeolitic imidazolate framework-8, TItania, Tetracycline, photocatalyst, photodegradation

Abstract

Tetracycline’s presence in water systems poses significant environmental and public health concerns due to extensive pharmaceutical discharges. Accordingly, considerable research efforts have been directed toward developing efficient catalytic systems for the photodegradation and removal of tetracycline from contaminated water. Thus, in this work, a series of zeolitic imidazolate framework-8/titania (ZIF-8/TiO2) composites were synthesized with varied precursor concentrations of zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and 2-methylimidazole (C4H6N2). The precursor ratios were adjusted to control the growth and distribution of ZIF-8 on TiO2, thereby tuning its physicochemical properties and photocatalytic performance. The prepared samples were characterized by Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy,  X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The analyses confirmed the successful incorporation of ZIF-8, reduced bandgap energies (down to 3.07 eV), and mixed anatase-rutile phases. Using tetracycline as the target pollutant, the UV light photoactivity of the ZIF-8/TiO2 composites was evaluated. Compared with commercial TiO2, the composite prepared with 0.5 mM Zn(NO3)2.6H2O and 4.0 mM C4H6N2 (ZIF-8/TiO2 (0.5,4.0)) exhibited enhanced photoactivity for tetracycline degradation (91.01%). These properties, including the high tetracycline photodegradation ability, make the ZIF-8/TiO2 (0.5,4.0) photocatalyst a promising material for practical water treatment applications.

References

Amangelsin, Y., Semenova, Y., Dadar, M., Aljofan, M., & Bjørklund, G. (2023). The impact of tetracycline pollution on the aquatic environment and removal strategies. Antibiotics, 12(3), 1–15. https://doi.org/10.3390/antibiotics12030440

Zhang, L., Zhu, Z., Zhao, M., He, J., Zhang, X., Hao, F., & Du, P. (2023). Occurrence, removal, emission and environment risk of 32 antibiotics and metabolites in wastewater treatment plants in Wuhu, China. Science of the Total Environment, 899, 1-10. https://doi.org/10.1016/j.scitotenv.2023.165681

Yang, Q., Gao, Y., Ke, J., Show, P. L., Ge, Y., Liu, Y., Guo, R., & Chen, J. (2021). Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered, 12(1), 7376–7416. https://doi.org/10.1080/21655979.2021.1974657

Verdini, F., Calcio Gaudino, E., Canova, E., Colia, M. C., & Cravotto, G. (2023). Highly efficient tetracycline degradation under simultaneous hydrodynamic cavitation and electrical discharge plasma in flow. Industrial and Engineering Chemistry Research, 14, 1–6. https://doi.org/10.1021/acs.iecr.3c00266

Naghizadeh, A., Etemadinia, T., Derakhshani, E., & Esmati, M. (2023). Graphitic carbon nitride loaded on powdered mesoporous silica nanoparticles for photocatalytic tetracycline antibiotic degradation under UV-C light irradiation. Research on Chemical Intermediates, 49(3), 1165–1177. https://doi.org/10.1007/s11164-022-04942-z

AbdulKareem, E. A., Mahmoud, Z. H., & Khadom, A. A. (2023). Sunlight assisted photocatalytic mineralization of organic pollutants over RGO impregnated TiO2 nanocomposite: Theoretical and experimental study. Case Studies in Chemical and Environmental Engineering, 8, 1-14. https://doi.org/10.1016/j.cscee.2023.100446

Al Miad, A., Saikat, S. P., Alam, M. K., Sahadat Hossain, M., Bahadur, N. M., & Ahmed, S. (2024). Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: A review. Nanoscale Advances, 6, 4781–4803. https://doi.org/10.1039/d4na00517a

Suhaimi, N. H. S., Azhar, R., Adzis, N. S., Mohd Ishak, M. A., Ramli, M. Z., Hamzah, M. Y., Ismail, K., & Nawawi, W. I. (2025). Recent updates on TiO2-based materials for various photocatalytic applications in environmental remediation and energy production. Desalination and Water Treatment, 321(August 2024), 1–22. https://doi.org/10.1016/j.dwt.2024.100976

El Mchaouri, M., Mallah, S., Abouhajjoub, D., Boumya, W., Elmoubarki, R., Essadki, A., Barka, N., & Elhalil, A. (2025). Engineering TiO2 photocatalysts for enhanced visible-light activity in wastewater treatment applications. Tetrahedron Green Chem, 6(June), 1–21. https://doi.org/10.1016/j.tgchem.2025.100084

Gao, J., Chu, W., Ding, X., Ding, L., Guo, Q., & Fu, Y. (2023). Degradation kinetic studies of BSA@ZIF-8 nanoparticles with various zinc precursors, metal-to-ligand ratios, and pH conditions. ACS Omega, 8(47), 44601–44610. https://doi.org/10.1021/acsomega.3c04973

Li, R., Li, W., Jin, C., He, Q., & Wang, Y. (2020). Fabrication of ZIF-8@TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation. Journal of Alloys and Compounds, 825, 2–11. https://doi.org/10.1016/j.jallcom.2020.154008

Angela, S., Bervia Lunardi, V., Kusuma, K., Edi Soetaredjo, F., Nyoo Putro, J., Permatasari Santoso, S., Elisa Angkawijaya, A., Lie, J., Gunarto, C., Kurniawan, A., & Ismadji, S. (2021). Facile synthesis of hierarchical porous ZIF-8@TiO2 for simultaneous adsorption and photocatalytic decomposition of crystal violet. Environmental Nanotechnology, Monitoring and Management, 16(September), 1–14. https://doi.org/10.1016/j.enmm.2021.100598

Jing, Y., Yin, H., Li, C., Chen, J., Wu, S., Liu, H., Xie, L., Lei, Q., Sun, M., & Yu, S. (2022). Fabrication of Pt doped TiO2–ZnO@ZIF-8 core@shell photocatalyst with enhanced activity for phenol degradation. Environmental Research, 203(August 2021), 1–6. https://doi.org/10.1016/j.envres.2021.111819

Cen, L., Tang, T., Yu, F., Wu, H., Li, C., Zhu, H., & Guo, Y. (2023). Fabrication of ZIF-8/TiO2 electrospinning nanofibers for synergistic photodegradation in dyeing wastewater. Journal of Industrial and Engineering Chemistry, 126, 537–545. https://doi.org/10.1016/j.jiec.2023.06.042

Wang, T., Li, M., Wang, W., Liu, X., Qi, X., Su, X., Shi, D., Zhan, H., & Wang, Y. (2024). Preparation of TiO2(B)/GO/ZIF-8 with enhanced photocatalytic performance for degradation ibuprofen under visible light. Materials Science and Engineering: B, 301(October 2023), 1-8. https://doi.org/10.1016/j.mseb.2023.117163

Tamimzadeh, A., Dodelehband, A., Gordanshekan, A., Arabian, S., Farahmand, R., Farhadian, M., Solaimany Nazar, A. R., & Tangestaninejad, S. (2025). A multifaceted investigation on photocatalytic performance of Bi2WO6/TiO2/ZIF-8: Adsorption, artificial neural networks, density functional theory, and antibacterial assessment studies. Advanced Powder Technology, 36(8), 1–17. https://doi.org/10.1016/j.apt.2025.104984

Trung, L. G., Nguyen, M. K., Hang Nguyen, T. D., Tran, V. A., Gwag, J. S., & Tran, N. T. (2023). Highly efficient degradation of reactive black KN-B dye by ultraviolet light responsive ZIF-8 photocatalysts with different morphologies. RSC Advances, 13(9), 5908–5924. https://doi.org/10.1039/d2ra08312d

Zhang, Y., Jia, Y., Li, M., & Hou, L. (2018). Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework- 8 crystals at room temperature. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-28015-7

Yurtsever, H. A., & Çetin, A. E. (2021). Fabrication of ZIF-8 decorated copper doped TiO2 nanocomposite at low ZIF-8 loading for solar energy applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 625(March). https://doi.org/10.1016/j.colsurfa.2021.126980

Gabriela, R. N., Heryanto, H., & Tahir, D. (2025). Nanocomposite TiO2/ZnO/chitosan by method sol-gel for self-cleaning application. International Journal of Biological Macromolecules, 298(June 2024), 140076. https://doi.org/10.1016/j.ijbiomac.2025.140076

Tahir, M. B., Sohaib, M., Sagir, M., & Rafique, M. (2021). Role of Nanotechnology in Photocatalysis. Encyclopedia of Smart Materials, 2, 578–589. https://doi.org/10.1016/B978-0-12-815732-9.00006-1

Khalilova, H. K., Hasanova, S. A., & Aliyev, F. G. (2018). Photocatalytic removal of organic pollutants from industrial wastewater using TiO2 catalyst. Journal of Environmental Protection, 09(06), 691–698. https://doi.org/10.4236/jep.2018.96043

Kanoun, M. B., Ahmed, F., Awada, C., Jonin, C., & Brevet, P. F. (2024). Band gap engineering of Au doping and Au–N codoping into anatase TiO2 for enhancing the visible light photocatalytic performance. International Journal of Hydrogen Energy, 51(October 2023), 907–913. https://doi.org/10.1016/j.ijhydene.2023.10.244

Pouramini, Z., Mousavi, S. M., Babapoor, A., Hashemi, S. A., & Lai, C. W. (2023). Effect of metal atom in zeolitic imidazolate frameworks (ZIF-8 & 67) for removal of dyes and antibiotics from wastewater: A review. Catalysts, 13(1), 155. https://doi.org/10.3390/catal13010155

Ökte, A. N., & Tuncel, D. (2025). TiO2@ZIF-8 hybrid as a type II heterojunction photocatalyst: Adsorption/photocatalytic properties, kinetics, and effect of humidity. Photochemical and Photobiological Sciences, 24(7), 1107–1126. https://doi.org/10.1007/s43630-025-00754-3

Xia, T., Lin, Y., Li, W., & Ju, M. (2021). Photocatalytic degradation of organic pollutants by MOFs based materials: A review. Chinese Chemical Letters, 32(10), 2975–2984. https://doi.org/10.1016/j.cclet.2021.02.058

Zeng, X., Huang, L., Wang, C., Wang, J., Li, J., & Luo, X. (2016). Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect. ACS Applied Materials and Interfaces, 8(31), 20274–20282. https://doi.org/10.1021/acsami.6b05746

Zhang, Y., Li, Q., Liu, C., Shan, X., Chen, X., Dai, W., & Fu, X. (2018). The promoted effect of a metal-organic frameworks (ZIF-8) on Au/TiO2 for CO oxidation at room temperature both in dark and under visible light irradiation. Applied Catalysis B: Environmental, 224(September 2017), 283–294. https://doi.org/10.1016/j.apcatb.2017.10.027

Bogdan, L., & Palˇ, A. (2023). Eco-friendly synthesis of TiO2/ZIF-8 composites: characterization and application for the removal of imidacloprid from wastewater. Processes, 11(963), 1–15. https://doi.org/10.3390/pr11030963

Amani, S., Rostamizadeh, M., & Ghadimi, A. (2021). Highly active Fe-doped ZIF-8 nanocatalyst in electrochemical degradation of pharmaceutical pollutant in neutral environment. Journal of Water and Environmental Nanotechnology, 6(2), 138–149. https://doi.org/10.22090/jwent.2021.02.004

Safeen, A., Safeen, K., Ullah, R., Zulfqar, N., Shah, W. H., Zaman, Q., Althubeiti, K., Al Otaibi, S., Rahman, N., Iqbal, S., Khan, A., Khan, A., & Khan, R. (2022). Enhancing the physical properties and photocatalytic activity of TiO2 nanoparticles via cobalt doping. RSC Advances, 12(25), 15767–15774. https://doi.org/10.1039/d2ra01948e

Arora, I., Chawla, H., Chandra, A., Sagadevan, S., & Garg, S. (2022). Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorganic Chemistry Communications, 143(February), 1–20. https://doi.org/10.1016/j.inoche.2022.109700

Downloads

Published

2025-11-30

How to Cite

Mohamad Zamani, N. K., Sean, N. A., & Sheela Chandren. (2025). Synthesis of Surface-Bound ZIF-8 Layers on Titania for the Photodegradation of Tetracycline. Journal of Materials in Life Sciences , 4(2), 102–113. https://doi.org/10.11113/jomalisc.v4.109

Issue

Section

Articles