Synthesis of Surface-Bound ZIF-8 Layers on Titania for the Photodegradation of Tetracycline
DOI:
https://doi.org/10.11113/jomalisc.v4.109Keywords:
Zeolitic imidazolate framework-8, TItania, Tetracycline, photocatalyst, photodegradationAbstract
Tetracycline’s presence in water systems poses significant environmental and public health concerns due to extensive pharmaceutical discharges. Accordingly, considerable research efforts have been directed toward developing efficient catalytic systems for the photodegradation and removal of tetracycline from contaminated water. Thus, in this work, a series of zeolitic imidazolate framework-8/titania (ZIF-8/TiO2) composites were synthesized with varied precursor concentrations of zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and 2-methylimidazole (C4H6N2). The precursor ratios were adjusted to control the growth and distribution of ZIF-8 on TiO2, thereby tuning its physicochemical properties and photocatalytic performance. The prepared samples were characterized by Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy, X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). The analyses confirmed the successful incorporation of ZIF-8, reduced bandgap energies (down to 3.07 eV), and mixed anatase-rutile phases. Using tetracycline as the target pollutant, the UV light photoactivity of the ZIF-8/TiO2 composites was evaluated. Compared with commercial TiO2, the composite prepared with 0.5 mM Zn(NO3)2.6H2O and 4.0 mM C4H6N2 (ZIF-8/TiO2 (0.5,4.0)) exhibited enhanced photoactivity for tetracycline degradation (91.01%). These properties, including the high tetracycline photodegradation ability, make the ZIF-8/TiO2 (0.5,4.0) photocatalyst a promising material for practical water treatment applications.
References
Amangelsin, Y., Semenova, Y., Dadar, M., Aljofan, M., & Bjørklund, G. (2023). The impact of tetracycline pollution on the aquatic environment and removal strategies. Antibiotics, 12(3), 1–15. https://doi.org/10.3390/antibiotics12030440
Zhang, L., Zhu, Z., Zhao, M., He, J., Zhang, X., Hao, F., & Du, P. (2023). Occurrence, removal, emission and environment risk of 32 antibiotics and metabolites in wastewater treatment plants in Wuhu, China. Science of the Total Environment, 899, 1-10. https://doi.org/10.1016/j.scitotenv.2023.165681
Yang, Q., Gao, Y., Ke, J., Show, P. L., Ge, Y., Liu, Y., Guo, R., & Chen, J. (2021). Antibiotics: An overview on the environmental occurrence, toxicity, degradation, and removal methods. Bioengineered, 12(1), 7376–7416. https://doi.org/10.1080/21655979.2021.1974657
Verdini, F., Calcio Gaudino, E., Canova, E., Colia, M. C., & Cravotto, G. (2023). Highly efficient tetracycline degradation under simultaneous hydrodynamic cavitation and electrical discharge plasma in flow. Industrial and Engineering Chemistry Research, 14, 1–6. https://doi.org/10.1021/acs.iecr.3c00266
Naghizadeh, A., Etemadinia, T., Derakhshani, E., & Esmati, M. (2023). Graphitic carbon nitride loaded on powdered mesoporous silica nanoparticles for photocatalytic tetracycline antibiotic degradation under UV-C light irradiation. Research on Chemical Intermediates, 49(3), 1165–1177. https://doi.org/10.1007/s11164-022-04942-z
AbdulKareem, E. A., Mahmoud, Z. H., & Khadom, A. A. (2023). Sunlight assisted photocatalytic mineralization of organic pollutants over RGO impregnated TiO2 nanocomposite: Theoretical and experimental study. Case Studies in Chemical and Environmental Engineering, 8, 1-14. https://doi.org/10.1016/j.cscee.2023.100446
Al Miad, A., Saikat, S. P., Alam, M. K., Sahadat Hossain, M., Bahadur, N. M., & Ahmed, S. (2024). Metal oxide-based photocatalysts for the efficient degradation of organic pollutants for a sustainable environment: A review. Nanoscale Advances, 6, 4781–4803. https://doi.org/10.1039/d4na00517a
Suhaimi, N. H. S., Azhar, R., Adzis, N. S., Mohd Ishak, M. A., Ramli, M. Z., Hamzah, M. Y., Ismail, K., & Nawawi, W. I. (2025). Recent updates on TiO2-based materials for various photocatalytic applications in environmental remediation and energy production. Desalination and Water Treatment, 321(August 2024), 1–22. https://doi.org/10.1016/j.dwt.2024.100976
El Mchaouri, M., Mallah, S., Abouhajjoub, D., Boumya, W., Elmoubarki, R., Essadki, A., Barka, N., & Elhalil, A. (2025). Engineering TiO2 photocatalysts for enhanced visible-light activity in wastewater treatment applications. Tetrahedron Green Chem, 6(June), 1–21. https://doi.org/10.1016/j.tgchem.2025.100084
Gao, J., Chu, W., Ding, X., Ding, L., Guo, Q., & Fu, Y. (2023). Degradation kinetic studies of BSA@ZIF-8 nanoparticles with various zinc precursors, metal-to-ligand ratios, and pH conditions. ACS Omega, 8(47), 44601–44610. https://doi.org/10.1021/acsomega.3c04973
Li, R., Li, W., Jin, C., He, Q., & Wang, Y. (2020). Fabrication of ZIF-8@TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation. Journal of Alloys and Compounds, 825, 2–11. https://doi.org/10.1016/j.jallcom.2020.154008
Angela, S., Bervia Lunardi, V., Kusuma, K., Edi Soetaredjo, F., Nyoo Putro, J., Permatasari Santoso, S., Elisa Angkawijaya, A., Lie, J., Gunarto, C., Kurniawan, A., & Ismadji, S. (2021). Facile synthesis of hierarchical porous ZIF-8@TiO2 for simultaneous adsorption and photocatalytic decomposition of crystal violet. Environmental Nanotechnology, Monitoring and Management, 16(September), 1–14. https://doi.org/10.1016/j.enmm.2021.100598
Jing, Y., Yin, H., Li, C., Chen, J., Wu, S., Liu, H., Xie, L., Lei, Q., Sun, M., & Yu, S. (2022). Fabrication of Pt doped TiO2–ZnO@ZIF-8 core@shell photocatalyst with enhanced activity for phenol degradation. Environmental Research, 203(August 2021), 1–6. https://doi.org/10.1016/j.envres.2021.111819
Cen, L., Tang, T., Yu, F., Wu, H., Li, C., Zhu, H., & Guo, Y. (2023). Fabrication of ZIF-8/TiO2 electrospinning nanofibers for synergistic photodegradation in dyeing wastewater. Journal of Industrial and Engineering Chemistry, 126, 537–545. https://doi.org/10.1016/j.jiec.2023.06.042
Wang, T., Li, M., Wang, W., Liu, X., Qi, X., Su, X., Shi, D., Zhan, H., & Wang, Y. (2024). Preparation of TiO2(B)/GO/ZIF-8 with enhanced photocatalytic performance for degradation ibuprofen under visible light. Materials Science and Engineering: B, 301(October 2023), 1-8. https://doi.org/10.1016/j.mseb.2023.117163
Tamimzadeh, A., Dodelehband, A., Gordanshekan, A., Arabian, S., Farahmand, R., Farhadian, M., Solaimany Nazar, A. R., & Tangestaninejad, S. (2025). A multifaceted investigation on photocatalytic performance of Bi2WO6/TiO2/ZIF-8: Adsorption, artificial neural networks, density functional theory, and antibacterial assessment studies. Advanced Powder Technology, 36(8), 1–17. https://doi.org/10.1016/j.apt.2025.104984
Trung, L. G., Nguyen, M. K., Hang Nguyen, T. D., Tran, V. A., Gwag, J. S., & Tran, N. T. (2023). Highly efficient degradation of reactive black KN-B dye by ultraviolet light responsive ZIF-8 photocatalysts with different morphologies. RSC Advances, 13(9), 5908–5924. https://doi.org/10.1039/d2ra08312d
Zhang, Y., Jia, Y., Li, M., & Hou, L. (2018). Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework- 8 crystals at room temperature. Scientific Reports, 8(1), 1–8. https://doi.org/10.1038/s41598-018-28015-7
Yurtsever, H. A., & Çetin, A. E. (2021). Fabrication of ZIF-8 decorated copper doped TiO2 nanocomposite at low ZIF-8 loading for solar energy applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 625(March). https://doi.org/10.1016/j.colsurfa.2021.126980
Gabriela, R. N., Heryanto, H., & Tahir, D. (2025). Nanocomposite TiO2/ZnO/chitosan by method sol-gel for self-cleaning application. International Journal of Biological Macromolecules, 298(June 2024), 140076. https://doi.org/10.1016/j.ijbiomac.2025.140076
Tahir, M. B., Sohaib, M., Sagir, M., & Rafique, M. (2021). Role of Nanotechnology in Photocatalysis. Encyclopedia of Smart Materials, 2, 578–589. https://doi.org/10.1016/B978-0-12-815732-9.00006-1
Khalilova, H. K., Hasanova, S. A., & Aliyev, F. G. (2018). Photocatalytic removal of organic pollutants from industrial wastewater using TiO2 catalyst. Journal of Environmental Protection, 09(06), 691–698. https://doi.org/10.4236/jep.2018.96043
Kanoun, M. B., Ahmed, F., Awada, C., Jonin, C., & Brevet, P. F. (2024). Band gap engineering of Au doping and Au–N codoping into anatase TiO2 for enhancing the visible light photocatalytic performance. International Journal of Hydrogen Energy, 51(October 2023), 907–913. https://doi.org/10.1016/j.ijhydene.2023.10.244
Pouramini, Z., Mousavi, S. M., Babapoor, A., Hashemi, S. A., & Lai, C. W. (2023). Effect of metal atom in zeolitic imidazolate frameworks (ZIF-8 & 67) for removal of dyes and antibiotics from wastewater: A review. Catalysts, 13(1), 155. https://doi.org/10.3390/catal13010155
Ökte, A. N., & Tuncel, D. (2025). TiO2@ZIF-8 hybrid as a type II heterojunction photocatalyst: Adsorption/photocatalytic properties, kinetics, and effect of humidity. Photochemical and Photobiological Sciences, 24(7), 1107–1126. https://doi.org/10.1007/s43630-025-00754-3
Xia, T., Lin, Y., Li, W., & Ju, M. (2021). Photocatalytic degradation of organic pollutants by MOFs based materials: A review. Chinese Chemical Letters, 32(10), 2975–2984. https://doi.org/10.1016/j.cclet.2021.02.058
Zeng, X., Huang, L., Wang, C., Wang, J., Li, J., & Luo, X. (2016). Sonocrystallization of ZIF-8 on electrostatic spinning TiO2 nanofibers surface with enhanced photocatalysis property through synergistic effect. ACS Applied Materials and Interfaces, 8(31), 20274–20282. https://doi.org/10.1021/acsami.6b05746
Zhang, Y., Li, Q., Liu, C., Shan, X., Chen, X., Dai, W., & Fu, X. (2018). The promoted effect of a metal-organic frameworks (ZIF-8) on Au/TiO2 for CO oxidation at room temperature both in dark and under visible light irradiation. Applied Catalysis B: Environmental, 224(September 2017), 283–294. https://doi.org/10.1016/j.apcatb.2017.10.027
Bogdan, L., & Palˇ, A. (2023). Eco-friendly synthesis of TiO2/ZIF-8 composites: characterization and application for the removal of imidacloprid from wastewater. Processes, 11(963), 1–15. https://doi.org/10.3390/pr11030963
Amani, S., Rostamizadeh, M., & Ghadimi, A. (2021). Highly active Fe-doped ZIF-8 nanocatalyst in electrochemical degradation of pharmaceutical pollutant in neutral environment. Journal of Water and Environmental Nanotechnology, 6(2), 138–149. https://doi.org/10.22090/jwent.2021.02.004
Safeen, A., Safeen, K., Ullah, R., Zulfqar, N., Shah, W. H., Zaman, Q., Althubeiti, K., Al Otaibi, S., Rahman, N., Iqbal, S., Khan, A., Khan, A., & Khan, R. (2022). Enhancing the physical properties and photocatalytic activity of TiO2 nanoparticles via cobalt doping. RSC Advances, 12(25), 15767–15774. https://doi.org/10.1039/d2ra01948e
Arora, I., Chawla, H., Chandra, A., Sagadevan, S., & Garg, S. (2022). Advances in the strategies for enhancing the photocatalytic activity of TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorganic Chemistry Communications, 143(February), 1–20. https://doi.org/10.1016/j.inoche.2022.109700















