Potential Use of Phytochemical Extract as Prebiotic Compounds – A Brief Review
DOI:
https://doi.org/10.11113/jomalisc.v2.26Keywords:
Prebiotic, turmeric, Garcinia atroviridisAbstract
Our gastrointestinal tract's (GI) functioning is influenced by a diverse collection of bacteria. Prebiotics are one of the most promising strategies for changing the composition of the gut microbiota and the metabolic process. Prebiotics can be thought of as a 'food' for probiotics in general. Prebiotics in the diet have been shown in numerous studies to be an effective way to manipulate the intestinal microbiota through diet. This topic has attracted widespread attention and is being managed for the benefit of human health. Because of the rising demand for prebiotics, a new source of prebiotics is needed such as plants, one that is reasonably inexpensive when compared to commercially available prebiotics. Turmeric and Garcinia atroviridis are common and cheap cooking ingredients used in Malaysia that are rich in dietary polyphenols and able to modulate gut and intestinal microbiota. Therefore, the purpose of this review is to emphasize the prebiotic potential of naturally occurring non-digestible carbohydrates in various plants.
References
Rolim, P. M. 2015. Development of prebiotic food products and health benefits. Food Science and Technology, 35: 3-10. http://dx.doi.org/10.1590/1678-457X.6546
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson K. S., Cani, P. D., Verbeke, K. and Reid, G. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology & Hepatology, 14: 491-502. https://doi.org/10.1038/nrgastro.2017.75
Lockyer, S. and Stanner, S. 2019. Prebiotics–an added benefit of some fibre types. Nutrition Bulletin, 44(1): 74-91. https://doi.org/10.1111/nbu.12366
Alves-Santos, A. M., Sugizaki, C. S. A., Lima, G. C. and Naves, M. M. V. 2020. Prebiotic effect of dietary polyphenols: A systematic review. Journal of Functional Foods, 74: 104169. https://doi.org/10.1016/j.jff.2020.104169
de Souza Aquino, J., Batista, K. S., Menezes, F. N. D. D., Lins, P. P., de Sousa Gomes, J. A. and da Silva, L. A. 2017. Models to evaluate the prebiotic potential of foods. In: Hueda, M. C. (Eds) Functional Food: Improve Health Through Adequate Food.
Patel, S. and Goyal, A. 2012. The current trends and future perspectives of prebiotics research: a review. 3 Biotech, 2(2): 115-125. https://doi.org/10.5772/intechopen.69174
Thakur, K., Xu, G. Y., Zhang, J. G., Zhang, F., Hu, F. and Wei, Z. J. 2018. In vitro prebiotic effects of bamboo shoots and potato peel extracts on the proliferation of lactic acid bacteria under simulated GIT conditions. Frontiers in Microbiology, 9: 2114. https://doi.org/10.3389%2Ffmicb.2018.02114
Barber, T. M., Kabisch, S., Pfeiffer, A. F. and Weickert, M. O. 2020. The health benefits of dietary fibre. Nutrients, 12(10): 3209. https://doi.org/10.3390%2Fnu12103209
Silva, J. K., Cazarin, C. B. B., Junior, S. B., Augusto, F. and Junior, M. R. M. 2014. Passion fruit (Passiflora edulis) peel increases colonic production of short-chain fatty acids in Wistar rats. LWT-Food Science and Technology, 59(2): 1252-1257. https://doi.org/10.1016/j.lwt.2014.05.030
Gibson, G. R., Hutkins, R., Sanders, M. E., Prescott, S. L., Reimer, R. A., Salminen, S. J., Scott, K., Stanton, C., Swanson, K. S., Cani, P. D. and Verbeke, K. 2017. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature reviews Gastroenterology & Hepatology, 14(8): 491-502. https://doi.org/10.1038/nrgastro.2017.75
Meyer, T. S., Miguel, A. S., Fernández, D. E., and Ortiz, G. M. 2015. Biotechnological production of oligosaccharides — applications in the food industry. Food Production and Industry, 2: 25-78. https://doi.org/10.5772/60934
Jovanovic-Malinovska, R., Kuzmanova, S. and Winkelhausen, E. 2014. Oligosaccharide profile in fruits and vegetables as sources of prebiotics and functional foods. International Journal of Food Properties, 17(5): 949-965. https://doi.org/10.1080/10942912.2012.680221
Wang, Y. 2009. Prebiotics: Present and future in food science and technology. Food Research International, 42(1): 8-12. https://doi.org/10.1016/j.foodres.2008.09.001
Kaur, A. P., Bhardwaj, S., Dhanjal, D. S., Nepovimova, E., Cruz-Martins, N., Kuča, K., Chopra, C., Singh, R., Kumar, H., Șen, F. and Kumar, V. 2021. Plant prebiotics and their role in the amelioration of diseases. Biomolecules, 11(3): 440. https://doi.org/10.3390%2Fbiom11030440
Patel, S. and Goyal, A. 2011. Functional oligosaccharides: production, properties and applications. World Journal of Microbiology and Biotechnology, 27(5): 1119-1128. https://doi.org/10.1007/s11274-010-0558-5
Yazdi, F. G., Soleimanian-Zad, S., van den Worm, E. and Folkerts, G. 2019. Turmeric extract: Potential use as a prebiotic and anti-inflammatory compound? Plant Foods for Human Nutrition, 74: 293–299. https://doi.org/10.1007/s11130-019-00733-x
Promjiam, P., Siripongvutikorn, S. and Wichienchot, S. 2017. Functional properties of curry paste in relation to digestibility and fermentation by gut microbiota. International Journal of Food Properties, 20(12): 3204-3214. https://doi.org/10.1080/10942912.2017.1282515
Synytsya, A., Mickova, K., Synytsya, A., Jablonsky, I., Spevacek, J., Erban, V., Kovarikova, E. and Copikova, J. 2008. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydrate Polymers, 76(4): 548-556. https://doi.org/10.1016/j.carbpol.2008.11.021
Wichienchot, S., Jatupornpipat, M. and Rastall, R. A. 2010. Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chemistry, 120(3): 850-857. https://doi.org/10.1016/j.foodchem.2009.11.026
Abbasiliasi, S., Joo, S. T., Bello, B., Ibrahim, T. A. T., Yew, J. T., Ariff, A. and Mustafa, S. 2019. Prebiotic efficacy of coconut kernel cake’s soluble crude polysaccharides on growth rates and acidifying property of probiotic lactic acid bacteria in vitro. Biotechnology & Biotechnological Equipment, 33(1): 1216-1227. http://dx.doi.org/10.1080/13102818.2019.1649603
Chen, G., Chen, X., Yang, B., Yu, Q., Wei, X., Ding, Y. and Kan, J. 2019. New insight into bamboo shoot (Chimonobambusa quadrangularis) polysaccharides: Impact of extraction processes on its prebiotic activity. Food Hydrocolloids, 95: 367-377. https://doi.org/10.1016/j.foodhyd.2019.04.046
Rathamat, Z., Choorit, W., Chisti, Y. and Prasertsan, P. 2021. Two-step isolation of hemicellulose from oil palm empty fruit bunch fibers and its use in production of xylooligosaccharide prebiotic. Industrial Crops and Products, 160: 113124. https://doi.org/10.1016/j.indcrop.2020.113124
Jabczyk, M., Nowak, J. and Hudzik, B., Zubelewicz-Szkodzinska, B. 2021. Curcumin and its potential impact on microbiota. Nutrients, 13; 2004. https://doi.org/10.3390%2Fnu13062004
Ali, A., Wu, H., Ponnampalam, E. N., Cottrell, J. J., Dunshea, F. R. and Suleria, H. A. 2021. Comprehensive profiling of most widely used spices for their phenolic compounds through LC-ESI-QTOF-MS2 and their antioxidant potential. Antioxidants, 10(5): 721. https://doi.org/10.3390/antiox10050721
Zam, W. 2018. Gut microbiota as a prospective therapeutic target for curcumin: A review of mutual influence. Journal of Nutrition and Metabolism, 2018: 1367984. https://doi.org/10.1155/2018/1367984
Zanzer, Y. C., Plaza, M., Dougkas, A., Turner, C., Björck, I. and Östman, E. 2017. Polyphenol-rich spice-based beverages modulated postprandial early glycaemia, appetite and PYY after breakfast challenge in healthy subjects: A randomized, single blind, crossover study. Journal of Functional Foods, 35: 574-583. https://doi.org/10.1016/j.jff.2017.06.016
Lu, Q. Y., Summanen, P. H., Lee, R. P., Huang, J., Henning, S. M., Heber, D., Finegold, S. M. and Li, Z. 2017. Prebiotic potential and chemical composition of seven culinary spice extracts. Journal of Food Science, 82(8): 1807-1813. https://doi.org/10.1111/1750-3841.13792
Abdullah, A. R., Bakhari, N. A. and Osman, H. 2013. Study on the relationship of the phenolic, flavonoid and tannin content to the antioxidant activity of Garcinia atroviridis. Universal Journal of Applied Science, 1(3): 95-100. http://dx.doi.org/10.13189/ujas.2013.010304
Nursakinah, I., Zulkhairi, H. A., Norhafizah, M., Hasnah, B. and Razif, D. 2012. Nutritional content and in vitro antioxidant potential of Garcinia atroviridis (Asam gelugor) leaves and fruits. Malaysian Journal of Nutrition, 18(3): 363-371.
Taher, M., Hamidon, H., Susanti, D., and Zakaria, Z. A., 2016. Garcinia atroviridis – A review on phytochemicals and pharmacological properties. Marmara Pharmaceutical Journal, 21: 38-47. http://dx.doi.org/10.12991/marupj.259879
Thongkham, E., Aiemsaard, J. and Kaenjampa, P., 2021. Antioxidant and Antimicrobial Properties of Ethanolic Extract of Asam Gelugor Fruit (Garcinia atroviridis). Burapha Science Journal, 26(2): 1293-1307.
Carrera-Quintanar, L., Lopez Roa, R. I., Quintero-Fabián, S., Sánchez-Sánchez, M. A., Vizmanos, B. and Ortuño-Sahagún, D. 2018. Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediators of Inflammation, 2018: 9734845. https://doi.org/10.1155/2018/9734845
Cueva, C., Silva, M., Pinillos, I., Bartolomé, B. and Moreno-Arribas, M. V. 2020. Interplay between dietary polyphenols and oral and gut microbiota in the development of colorectal cancer. Nutrients, 12(3): 625. https://doi.org/10.3390/nu12030625
Dueñas, M., Muñoz-González, I., Cueva, C., Jiménez-Girón, A., Sánchez-Patán, F., Santos-Buelga, C., Moreno-Arribas, M. and Bartolomé, B. 2015. A survey of modulation of gut microbiota by dietary polyphenols. BioMed Research International, 2015: 850902. https://doi.org/10.1155/2015/850902
Singh, A. K., Cabral, C., Kumar, R., Ganguly, R., Kumar Rana, H., Gupta, A., Rosaria Lauro, M., Carbone, C., Reis, F., and Pandey, A. K. 2019. Beneficial effects of dietary polyphenols on gut microbiota and strategies to improve delivery efficiency. Nutrients, 11(9): 2216. https://doi.org/10.3390/nu11092216
Abd Aziz, N. A., Hasham, R., Sarmidi, M. R., Suhaimi, S. H. and Idris, M. K. H. 2021. A review on extraction techniques and therapeutic value of polar bioactives from Asian medicinal herbs: Case study on Orthosiphon aristatus, Eurycoma longifolia and Andrographis paniculata. Saudi Pharmaceutical Journal, 29(2): 143-165. https://doi.org/10.1016/j.jsps.2020.12.016
Suhaimi, S. H., Hasham, R., Hafiz Idris, M. K. H., Ismail, H. F., Mohd Ariffin, N. H. and Abdul Majid, F. A. 2019. Optimization of ultrasound-assisted extraction conditions followed by solid phase extraction fractionation from Orthosiphon stamineus Benth (Lamiace) leaves for antiproliferative effect on prostate cancer cells. Molecules, 24(22): 4183. https://doi.org/10.3390/molecules24224183
Kasprzak-Drozd, K., Oniszczuk, T., Stasiak, M. and Oniszczuk, A. 2021. Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome. International Journal of Molecular Sciences, 22(7): 3715. https://doi.org/10.3390%2Fijms22073715
Plamada, D. and Vodnar, D. C. 2021. Polyphenols—Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients, 14(1): 137. https://doi.org/10.3390/nu14010137