In Silico Study of the 5-Hydroxytryptamine-2C Receptor Antagonist Activity of Anthocyanins as Antidepressant Therapy
DOI:
https://doi.org/10.11113/jomalisc.v2.29Keywords:
Anthocyanin, antidepressant, in-silico, serotonin receptorAbstract
This study aimed to evaluate the drug-likeness, pharmacokinetic and safety prediction of six types of anthocyanins (ANC) as well as virtual molecular interaction between ANC and 5-hydroxytryptamine-2C (5HT-2C) receptor for antagonist target of antidepressant drug development. The Lipinski rule of five was used to predict the oral drug-likeness of ANC. The pharmacokinetic and safety prediction was analyzed with a free accessible web server. The ligands of ANC were retrieved from PubChem National Centre for Biotechnology Information (NCBI) database. The protein of the 5HT-2C receptor was obtained from Protein Data Bank. Molecular docking was performed by PyRx software and visualized using Discovery Studio Software. The results showed ANC is proposed as an oral drug candidate. The pharmacokinetic prediction of ANC was demonstrated to have high absorption in the intestinal route, solubility in the aqueous phase, capability to evade hepatic first-pass metabolism and high total clearance from the kidney. Virtual toxicity prediction showed a higher threshold of chronic lethal dose than control with no toxicity on the salmonella typhimurium reverses mutation assay (AMES) test, liver, and skin. Molecular prediction found ANC type of delphinidin has the most similar interaction site with the control antagonist ligand on the 5HT-2C receptor which is facilitated with hydrogen bonds and hydrophobic bonds at amino residues of Trp324, Phe328, Ala222 and Val135. We concluded ANC particularly delphinidin is proposed as an oral drug candidate potentially used as a 5HT-2C receptor antagonist and thus, further in vitro and in vivo studies are necessary to confirm the effect on antidepressant activity.
References
Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809.
Tan, J., Han, Y., Han, B., Qi, X., Cai, X., Ge, S., & Xue, H. (2022). Extraction and purification of anthocyanins: A review. Journal of Agriculture and Food Research, 100306.
Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & nutrition research, 61(1), 1361779.
Rahman, M. M., Ichiyanagi, T., Komiyama, T., Sato, S., & Konishi, T. (2008). Effects of anthocyanins on psychological stress-induced oxidative stress and neurotransmitter status. Journal of Agricultural and Food Chemistry, 56(16), 7545-7550.
Mattioli, R., Francioso, A., Mosca, L., & Silva, P. (2020). Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules, 25(17), 3809.
Fang, J. L., Luo, Y., Jin, S. H., Yuan, K., & Guo, Y. (2020). Ameliorative effect of anthocyanin on depression mice by increasing monoamine neurotransmitter and up-regulating BDNF expression. Journal of Functional Foods, 66, 103757.
Kurnianingsih, N., Ratnawati, R., Nazwar, T. A., Ali, M., & Fatchiyah, F. (2020). The behavioral effect of anthocyanin from purple sweet potatoes on prenatally stressed offspring mice. Systematic Reviews in Pharmacy, 11(10), 482-490.
Ślifirski, G., Król, M., & Turło, J. (2021). 5-HT receptors and the development of new antidepressants. International journal of molecular sciences, 22(16), 9015.
Papp, N., Koncz, S., Kostyalik, D., Kitka, T., Petschner, P., Vas, S., & Bagdy, G. (2020). Acute 5-HT2C receptor antagonist SB-242084 treatment affects EEG gamma band activity similarly to chronic escitalopram. Frontiers in Pharmacology, 10, 1636.
Manvich, D. F., Kimmel, H. L., Cooper, D. A., & Howell, L. L. (2012). The serotonin 2C receptor antagonist SB 242084 exhibits abuse-related effects typical of stimulants in squirrel monkeys. Journal of Pharmacology and Experimental Therapeutics, 342(3), 761-769.
Al-Harbi, K. S. (2012). Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Preference and Adherence, 369-388.
Hritcu, L., Ionita, R., Postu, P. A., Gupta, G. K., Turkez, H., Lima, T. C., Carvalho, C. U. S. and de Sousa, D. P. (2017). Antidepressant flavonoids and their relationship with oxidative stress. Oxidative Medicine and Cellular Longevity, 2017.
Brogi, S., Ramalho, T. C., Kuca, K., Medina-Franco, J. L., & Valko, M. (2020). In silico methods for drug design and discovery. Frontiers in Chemistry, 8, 612.
Kähkönen, M. P., & Heinonen, M. (2003). Antioxidant activity of anthocyanins and their aglycons. Journal of Agricultural and Food Chemistry, 51(3), 628-633.
Alodeani, E. A., Arshad, M., & Izhari, M. A. (2015). Anti-uropathogenic activity, drug likeness, physicochemical and molecular docking assessment of (E-)-N′-(substituted-benzylidene)-2-(quinolin-8-yloxy) acetohydrazide. Asian Pacific Journal of Tropical Biomedicine, 5(8), 676-683.
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 64, 4-17.
Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066-4072.
Han, Y., Zhang, J., Hu, C. Q., Zhang, X., Ma, B., & Zhang, P. (2019). In silico ADME and toxicity prediction of ceftazidime and its impurities. Frontiers in pharmacology, 10, 434.
Wijaya, R. M., Hafidzhah, M. A., Kharisma, V. D., Ansori, A. N. M., & Parikesit, A. A. (2021). COVID-19 in silico drug with Zingiber officinale natural product compound library targeting the Mpro protein. Makara Journal of Science, 25(3), 5.
Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Chemical biology: methods and protocols, 243-250.
Abdullahi, S. H., Uzairu, A., Shallangwa, G. A., Uba, S., & Umar, A. B. (2022). Molecular Docking, ADMET and Pharmacokinetic properties predictions of some di-aryl Pyridinamine derivatives as Estrogen Receptor (Er+) Kinase Inhibitors. Egyptian Journal of Basic and Applied Sciences, 9(1), 180-204.
Sari, D. R. T., Cairns, J. R. K., Safitri, A., & Fatchiyah, F. (2019). Virtual prediction of the delphinidin-3-o-glucoside and peonidin-3-o-glucoside as anti-inflammatory of TNF-α signaling. Acta Informatica Medica, 27(3), 152.
Utami, J. P., Kurnianingsih, N., & Faisal, M. R. (2022). An in Silico Study of the Cathepsin L Inhibitory Activity of Bioactive Compounds in Stachytarpheta jamaicensis as a Covid-19 Drug Therapy. Makara Journal of Science, 25-36.
Kamiloglu, S., Capanoglu, E., Grootaert, C., & Van Camp, J. (2015). Anthocyanin absorption and metabolism by human intestinal Caco-2 cells—A review. International Journal of Molecular Sciences, 16(9), 21555-21574.
Cheng, M., Zhang, X., Cao, J., Zheng, X., & Zhang, Z. (2018). Caco-2 cell transport of purple sweet potato anthocyanins-phospholipids complex. Journal of Food Science and Technology, 55, 304-312.
Talavera, S., Felgines, C., Texier, O., Besson, C., Lamaison, J. L., & Rémésy, C. (2003). Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. The Journal of Nutrition, 133(12), 4178-4182.
Fernandes, I., Faria, A., Calhau, C., de Freitas, V., & Mateus, N. (2014). Bioavailability of anthocyanins and derivatives. Journal of Functional Foods, 7, 54-66.
Homayun, B., Lin, X., & Choi, H. J. (2019). Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics, 11(3), 129.
Husain, A., Ahmad, A., Khan, S. A., Asif, M., Bhutani, R., & Al-Abbasi, F. A. (2016). Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharmaceutical Journal, 24(1), 104-114.
Deodhar, M., Al Rihani, S. B., Arwood, M. J., Darakjian, L., Dow, P., Turgeon, J., & Michaud, V. (2020). Mechanisms of CYP450 inhibition: understanding drug-drug interactions due to mechanism-based inhibition in clinical practice. Pharmaceutics, 12(9), 846.
Benet, L. Z., & Zia-Amirhosseini, P. (1995). Basic principles of pharmacokinetics. Toxicologic Pathology, 23(2), 115-123.
Alshammari, T. M. (2016). Drug safety: the concept, inception and its importance in patients’ health. Saudi Pharmaceutical Journal, 24(4), 405-412.
McCarren, P., Springer, C., & Whitehead, L. (2011). An investigation into pharmaceutically relevant mutagenicity data and the influence on Ames predictive potential. Journal of cheminformatics, 3(1), 1-20.
Yoshimoto, M., Okuno, S., Yamaguchi, M., & Yamakawa, O. (2001). Antimutagenicity of deacylated anthocyanins in purple-fleshed sweetpotato. Bioscience, Biotechnology, and Biochemistry, 65(7), 1652-1655.
Senior, T., Botha, M. J., Kennedy, A. R., & Calvo-Castro, J. (2020). Understanding the contribution of individual amino acid residues in the binding of psychoactive substances to monoamine transporters. ACS Omega, 5(28), 17223-17231.
Di Giovanni, G., & De Deurwaerdère, P. (2016). New therapeutic opportunities for 5-HT2C receptor ligands in neuropsychiatric disorders. Pharmacology & Therapeutics, 157, 125-162.
Millan, M. J. (2005). Serotonin 5-HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapies, 60(5), 441-460.
Yohn, C. N., Gergues, M. M., & Samuels, B. A. (2017). The role of 5-HT receptors in depression. Molecular Brain, 10(1), 1-12.
Kimura, A., Stevenson, P. L., Carter, R. N., MacColl, G., French, K. L., Paul Simons, J., Al‐Shawi, R., Kelly, V., Chapman, K. E. & Holmes, M. C. (2009). Overexpression of 5‐HT2C receptors in forebrain leads to elevated anxiety and hypoactivity. European Journal of Neuroscience, 30(2), 299-306.
Price, A. E., Anastasio, N. C., Stutz, S. J., Hommel, J. D., & Cunningham, K. A. (2018). Serotonin 5-HT2C receptor activation suppresses binge intake and the reinforcing and motivational properties of high-fat food. Frontiers in Pharmacology, 9, 821.
Mongeau, R., Martin, C. B., Chevarin, C., Maldonado, R., Hamon, M., Robledo, P., & Lanfumey, L. (2010). 5‐HT2C receptor activation prevents stress‐induced enhancement of brain 5‐HT turnover and extracellular levels in the mouse brain: modulation by chronic paroxetine treatment. Journal of Neurochemistry, 115(2), 438-449.
Martin, J. R., Ballard, T. M., & Higgins, G. A. (2002). Influence of the 5-HT2C receptor antagonist, SB-242084, in tests of anxiety. Pharmacology Biochemistry and Behavior, 71(4), 615-625.
Masson, J., Emerit, M. B., Hamon, M., & Darmon, M. (2012). Serotonergic signaling: multiple effectors and pleiotropic effects. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling, 1(6), 685-713.
Fletcher, P. J., Sinyard, J., & Higgins, G. A. (2006). The effects of the 5-HT 2C receptor antagonist SB242084 on locomotor activity induced by selective, or mixed, indirect serotonergic and dopaminergic agonists. Psychopharmacology, 187, 515-525.
Gutierres, J. M., Carvalho, F. B., Schetinger, M. R. C., Marisco, P., Agostinho, P., Rodrigues, M., ... & Spanevello, R. (2014). Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer's type. Life Sciences, 96(1-2), 7-17.
Fang, J. L., Luo, Y., Jin, S. H., Yuan, K., & Guo, Y. (2020). Ameliorative effect of anthocyanin on depression mice by increasing monoamine neurotransmitter and up-regulating BDNF expression. Journal of Functional Foods, 66, 103757.
Shan, X., Chen, J., Dai, S., Wang, J., Huang, Z., Lv, Z., Wang, Q. & Wu, Q. (2020). Cyanidin-related antidepressant-like efficacy requires PI3K/AKT/FoxG1/FGF-2 pathway modulated enhancement of neuronal differentiation and dendritic maturation. Phytomedicine, 76, 153269.