Optimization of Piper sarmentosum Extract Concentration and Exposure Time to Inhibit Biofilm Formation of Dental Plaque-Causing Bacteria

Authors

  • Sze Min Yong Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nurriza Ab Latif Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nurzila Ab Latif Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jomalisc.v3.75

Keywords:

Dental plaque-causing bacteria, P. sarmentosum, GC-MS, biofilm-inhibition assay

Abstract

Streptococcus mutans and Streptococcus sobrinus are the primary oral pathogens that can lead to the formation of dental plaque. Piper sarmentosum is a medicinal plant has the potential alternative solution to solve the problem. The objectives of this project were to optimize the extraction concentration, total phenolic compounds (TPC) and total flavonoid compounds (TFC) in P. sarmentosum by using 80% methanol and 95% ethanol as the extraction solvents and the exposure time of the extract of P. sarmentosum to inhibit the biofilm formation of both S. mutans and S. sobrinus. The extract with higher TPC and TFC was screened by using GC-MS analysis. The minimum inhibitory concentration (MIC) of the plant extract against the oral pathogen was determined by using an MTT colourimetric assay. The anti-adherence and biofilm-inhibitory assays were performed when the exposure time of the plant extract towards the oral pathogen reached 1, 3, 6 and 24 hours. The 80% methanolic extract exerts a higher ability to extract more phenolic and flavonoid compounds compared with 95% ethanol as the extraction solvent. The MIC of the 80% methanolic extract towards S. mutans and S. sobrinus was 50 mg/mL and 100 mg/mL, respectively. A dose-dependent manner was observed in both anti-adherence and biofilm inhibitory assays. The best biofilm-inhibitory activity was observed when the exposure time of the plant extract towards the oral pathogen reached 1 hour. These findings served as preliminary ideas about the potential of P. sarmentosum to develop into oral care products.

References

Albutti, A., Gul, M. S., Siddiqui, M. F., Maqbool, F., Adnan, F., Ullah, I., ... & Salman, M. (2021). Combating biofilm by targeting its formation and dispersal using gallic acid against single and multispecies bacteria causing dental plaque. Pathogens, 10(11), 1486. https://doi.org/10.3390/pathogens10111486

Bhadoria, N., Gunwal, M., Suryawanshi, H., & Sonarkar, S. (2019). Antiadherence and antimicrobial property of herbal extracts (Glycyrrhiza glabra and Terminalia chebula) on Streptococcus mutans: An in vitro experimental study. Journal of Oral and Maxillofacial Pathology, 23(1), 73. https://doi.org/10.4103/jomfp.jomfp_103_18

Casillas-Vargas, G., Ocasio‐Malavé, C., Medina, S., Morales‐Guzmán, C., Del Valle, R. G., Carballeira, N. M., & Sanabria‐Ríos, D. J. (2021). Antibacterial fatty acids: An update of possible mechanisms of action and implications in the development of the next generation of antibacterial agents. Progress in Lipid Research, 82, 101093. https://doi.org/10.1016/j.plipres.2021.101093

Chan, E. W. C., Tan, Y. P., Chin, S. J., Gan, L. Y., Kang, K. X., Fong, C. H., ... & How, Y. C. (2014). Antioxidant properties of selected fresh and processed herbs and vegetables. Free Radicals and Antioxidants, 4(1), 39–46. https://doi.org/10.5530/fra.2014.1.7

Chen, Y., Agnello, M., Dinis, M., Chien, K. C., Wang, J., Hu, W., ... & Zou, J. (2019). Lollipop containing Glycyrrhiza uralensis extract reduces Streptococcus mutans colonization and maintains oral microbial diversity in Chinese preschool children. PLOS ONE, 14(8), e0221756. https://doi.org/10.1371/journal.pone.0221756

Deus, F. P., & Ouanounou, A. (2022). Chlorhexidine in dentistry: Pharmacology, uses, and adverse effects. International Dental Journal, 72(3), 269–277. https://doi.org/10.1016/j.identj.2022.01.005

Giacaman, R. A., Jobet-Vila, P., & Muñoz‐Sandoval, C. (2014). Fatty acid effect on sucrose-induced enamel demineralization and cariogenicity of an experimental biofilm–caries model. Odontology, 103(2), 169–176. https://doi.org/10.1007/s10266-014-0154-5

Haghgoo, R., Mehran, M., Afshari, E., Zadeh, H. F., & Ahmadvand, M. (2017). Antibacterial effects of different concentrations of Althaea officinalis root extract versus 0.2% chlorhexidine and penicillin on Streptococcus mutans and Lactobacillus (in vitro). Journal of International Society of Preventive and Community Dentistry, 7(4), 180. https://doi.org/10.4103/jispcd.jispcd_150_17

Høiby, N., Bjarnsholt, T., Givskov, M., Molin, S., & Ciofu, O. (2010). Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 35(4), 322–332. https://doi.org/10.1016/j.ijantimicag.2009.12.011

Huang, C., Alimova, Y., Myers, T. M., & Ebersole, J. L. (2011). Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Archives of Oral Biology, 56(7), 650–654. https://doi.org/10.1016/j.archoralbio.2011.01.011

Ibrahim, M., Arifin, N. K., & Hasali, N. M. (2022). Total phenolic content in Piper sarmentosum using different extraction techniques and solvents: A short review. Matrix Science Pharma, 6(1), 6. https://doi.org/10.4103/mtsp.mtsp_7_22

Jeyaraj, E. J., Lim, Y. Y., & Choo, W. S. (2020). Extraction methods of butterfly pea (Clitoria ternatea) flower and biological activities of its phytochemicals. Journal of Food Science and Technology, 58(6), 2054–2067. https://doi.org/10.1007/s13197-020-04745-3

Jeyaraj, E. J., Nathan, S., Lim, Y. Y., & Choo, W. S. (2022). Antibiofilm properties of Clitoria ternatea flower anthocyanin-rich fraction towards Pseudomonas aeruginosa. Access Microbiology, 4(4). https://doi.org/10.1099/acmi.0.000343

Kalbassi, S., Yarahmadi, M., Mohammadifard, H., & Ahmadi, F. (2022). The antibiofilm and antibacterial effects of medicinal plant extracts on isolated sulfate-reducing bacteria from orthodontic appliances. Food Science and Technology, 42. https://doi.org/10.1590/fst.38322

Lee, K., Kim, B., Keum, K., Yu, H., Kim, Y., Chang, B., ... & You, Y. (2011). Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation. Journal of Food Science, 76(9), C1352–C1356. https://doi.org/10.1111/j.1750-3841.2011.02427.x

Marsh, P. (2018). In sickness and in health—What does the oral microbiome mean to us? An ecological perspective. Advances in Dental Research, 29(1), 60–65. https://doi.org/10.1177/0022034517735295

Noor, H. M., Muhamad, H. S., Ismail, I. N. A., Radzi, S. M., Rehan, M. M., Kader, A., & Mohamad, R. (2013). Protein produced by Bacillus subtilis ATCC21332 in the presence of Cymbopogon flexuosus essential oil. Key Engineering Materials, 594–595, 370–377. https://doi.org/10.4028/www.scientific.net/kem.594-595.370

Okwu, M. U., Olley, M., Akpoka, O. A., & Izevbuwa, O. (2019). Methicillin-resistant Staphylococcus aureus (MRSA) and anti-MRSA activities of extracts of some medicinal plants: A brief review. AIMS Microbiology, 5(2), 117–137. https://doi.org/10.3934/microbiol.2019.2.117

Pakpahan, A., & Fadilah. (2011, October 31). Analysis interaction of glucosyltransferase inhibitor of caries from fatty acid by molecular docking simulation. International Conference on Biochemistry and Biophysics. https://sunankalijaga.org/prosiding/index.php/icbb/article/view/145

Rahman, S. A., Abdullah, U. S., & Shaharuddin, S. (2021). Formulation and antimicrobial screening of Piper sarmentosum cream against Staphylococcus aureus. Pertanika Journal of Tropical Agricultural Science, 44(3), 471–482. https://doi.org/10.47836/pjtas.44.3.02

Rath, S., Bal, S. C. B., & Dubey, D. (2021). Oral biofilm: Development mechanism, multidrug resistance, and their effective management with novel techniques. Rambam Maimonides Medical Journal, 12(1), e0004. https://doi.org/10.5041/rmmj.10428

Rahman, S. F. S. A. (2016). Piper sarmentosum Roxb.: A mini review of ethnobotany, phytochemistry, and pharmacology. Journal of Analytical & Pharmaceutical Research, 2(5). https://doi.org/10.15406/japlr.2016.02.00031

Samat, N. M. A. A., Ahmad, S., Awang, Y., Bakar, R. A. H., & Hakiman, M. (2020). Alterations in herbage yield, antioxidant activities, phytochemical contents, and bioactive compounds of Sabah snake grass (Clinacanthus nutans L.) with regards to harvesting age and harvesting frequency. Molecules, 25(12), 2833. https://doi.org/10.3390/molecules25122833

Saravia, M. E., Nelson-Filho, P., Ito, I. Y., Da Silva, L. A. B., & Emilson, C. (2011). Morphological differentiation between S. mutans and S. sobrinus on modified SB-20 culture medium. Microbiological Research, 166(1), 63–67. https://doi.org/10.1016/j.micres.2010.01.001

Shafiei, Z., Shuhairi, N. N., Yap, N. F. S., Sibungkil, C. A. H., & Latip, J. (2012). Antibacterial activity of Myristica fragrans against oral pathogens. Evidence-Based Complementary and Alternative Medicine, 2012, 1–7. https://doi.org/10.1155/2012/825362

Sintim, H. O., & Gürsoy, U. K. (2016). Biofilms as “connectors” for oral and systems medicine: A new opportunity for biomarkers, molecular targets, and bacterial eradication. OMICS, 20(1), 3–11. https://doi.org/10.1089/omi.2015.0146

Sulaiman, C. T., & Balachandran, I. (2012). Total phenolics and total flavonoids in selected Indian medicinal plants. Indian Journal of Pharmaceutical Sciences, 74(3), 258. https://doi.org/10.4103/0250-474x.106069

Sultana, B., Anwar, F., & Ashraf, M. (2019). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167–2180. https://doi.org/10.3390/molecules14062167

Sambunjak, D., Nickerson, J., Peričić, T. P., Johnson, T., Imai, P., Tugwell, P., & Worthington, H. V. (2019). Flossing for the management of periodontal diseases and dental caries in adults. The Cochrane Library. https://doi.org/10.1002/14651858.cd008829.pub3

Satria, D., Sofyanti, E., Wulandari, P., Fajarini, F., Pakpahan, S. D., & Limbong, S. A. (2022). Antibacterial activity of Medan butterfly pea (Clitoria ternatea L.) corolla extract against Streptococcus mutans ATCC®25175™ and Staphylococcus aureus ATCC®6538™. Фармация, 69(1), 195–202. https://doi.org/10.3897/pharmacia.69.e77076

Scott, S. E., Rozin, P., & Small, D. A. (2020). Consumers prefer “natural” more for preventatives than for curatives. Journal of Consumer Research, 47(3), 454–471. https://doi.org/10.1093/jcr/ucaa034

Sulaiman, S. F., Sajak, A. A. B., Ooi, K. L., Supriatno, & Seow, E. M. (2011). Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. Journal of Food Composition and Analysis, 24(4–5), 506–515. https://doi.org/10.1016/j.jfca.2011.01.020

Sun, X., Chen, W., Dai, W., Xin, H., Rahmand, K., Wang, Y., ... & Han, T. (2020). Piper sarmentosum Roxb.: A review on its botany, traditional uses, phytochemistry, and pharmacological activities. Journal of Ethnopharmacology, 263, 112897. https://doi.org/10.1016/j.jep.2020.112897

Syed‐Ab‐Rahman, S. F., Sijam, K., & Omar, D. (2014a). Identification and antibacterial activity of phenolic compounds in crude extracts of Piper sarmentosum (Kadok). Journal of Pure and Applied Microbiology, 8, 483–490. http://psasir.upm.edu.my/37913/

Syed‐Ab‐Rahman, S. F., Sijam, K., & Omar, D. (2014b). Chemical composition of Piper sarmentosum extracts and antibacterial activity against the plant pathogenic bacteria Pseudomonas fuscovaginae and Xanthomonas oryzae pv. oryzae. Journal of Plant Diseases and Protection, 121(6), 237–242. https://doi.org/10.1007/bf03356518

Thongphichai, W., Pongkittiphan, V., Laorpaksa, A., Wiwatcharakornkul, W., & Sukrong, S. (2023). Antimicrobial activity against foodborne pathogens and antioxidant activity of plant leaves traditionally used as food packaging. Foods, 12(12), 2409. https://doi.org/10.3390/foods12122409

Wolska, K. I., Grudniak, A. M., Rudnicka, Z., & Markowska, K. (2015). Genetic control of bacterial biofilms. Journal of Applied Genetics, 57(2), 225–238. https://doi.org/10.1007/s13353-015-0309-2

Wairata, J., Fadlan, A., Purnomo, A. S., Taher, M., & Ersam, T. (2022). Total phenolic and flavonoid contents, antioxidant, antidiabetic, and antiplasmodial activities of Garcinia forbesii King: A correlation study. Arabian Journal of Chemistry, 15(2), 103541. https://doi.org/10.1016/j.arabjc.2021.103541

Waldman, L. J., Butera, T., Boyd, J. D., & Grady, M. E. (2023). Sucrose-mediated formation and adhesion strength of Streptococcus mutans biofilms on titanium. Biofilm, 6, 100143. https://doi.org/10.1016/j.bioflm.2023.100143

Yun, T. Q., & Pa’ee, F. (2022). Phytochemical analysis of Clitoria ternatea leaves and its potential antibacterial activity against Escherichia coli. Journal of Sustainable Natural Resources, 3(1). https://doi.org/10.30880/jsunr.2022.03.01.005

Zhang, Q., Ma, Q., Wang, Y., Wu, H., & Zou, J. (2021). Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. International Journal of Oral Science, 13(1), 1–10. https://doi.org/10.1038/s41368-021-00137-1

Downloads

Published

2024-11-30

How to Cite

Yong, S. M., Ab Latif, N., & Ab Latif, N. (2024). Optimization of Piper sarmentosum Extract Concentration and Exposure Time to Inhibit Biofilm Formation of Dental Plaque-Causing Bacteria. Journal of Materials in Life Sciences (JOMALISC), 3(2), 20–30. https://doi.org/10.11113/jomalisc.v3.75

Issue

Section

Articles