Mapping the Research Landscape of Zeolitic Imidazolate Frameworks (ZIFs) for Hydrogen Production: Structural Modelling and Bibliometric Analysis
DOI:
https://doi.org/10.11113/jomalisc.v3.77Keywords:
Zeolitic imidazolate frameworks, molecular modelling, bibliometric analysis, hydrogen production, water splittingAbstract
Zeolitic Imidazolate Frameworks (ZIFs) have gained significant attention as potential catalysts for the Hydrogen Evolution Reaction (HER), a critical process in sustainable hydrogen production. This review offers an in-depth examination of ZIFs, emphasizing how their structural versatility—through the selection of metal centers and organic linkers—directly impacts HER efficiency. We analyze key ZIF-based catalysts, highlighting their performance in terms of electron transfer, active site exposure, and stability under reaction conditions. A bibliometric analysis tracks the growth of research in this domain, revealing collaboration networks and identifying the most influential studies driving innovation. By mapping the research landscape, we uncover trends, challenges, and emerging areas that are shaping the future of ZIFs in HER. The integration of structural modelling and bibliometric analysis provides a holistic understanding of the progress made in this field and serves as a guide for future research efforts aimed at optimizing ZIFs for hydrogen generation. This review underscores ZIFs' pivotal role in advancing the hydrogen economy through efficient HER processes.
References
Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., & Yaghi, O. M. (2008). High-throughput synthesis of zeolitic imidazolate frameworks and application to CO₂ capture. Science, 319(5865), 939–943. https://doi.org/10.1126/science.1152516
Benedetti, F. M., Okada, Y., Eguchi, M., Tanaka, H., & Kimura, K. (2020). Fabrication of robust ZIF-8 thin films with tailored structural flexibility. Journal of Materials Chemistry A, 8(30), 15005–15011. https://doi.org/10.1039/D0TA05398B
Chen, L., Li, Y., Zhang, X., & Wang, Y. (2019). Global trends in research on metal-organic frameworks: A bibliometric analysis. Journal of Cleaner Production, 240, 118137. https://doi.org/10.1016/j.jclepro.2019.118137
Chen, M., Zhao, Q., & Wei, H. (2022). Addressing stability and scalability in ZIF-based catalysts for hydrogen production. Chemical Engineering Journal, 433, 134368. https://doi.org/10.1016/j.cej.2021.134368
Chen, Y., Zhang, X., Yu, C., & Huang, L. (2022). Synergistic combination of ZIFs and nitrogen-doped carbon for efficient hydrogen evolution reactions. ACS Catalysis, 12(7), 4173–4183. https://doi.org/10.1021/acscatal.2c00404
Davis, P., Thompson, H., & Martin, J. (2021). Functionalization strategies for enhanced catalytic activity in metal-organic frameworks. Materials Science and Engineering: B, 267, 115075. https://doi.org/10.1016/j.mseb.2021.115075
Fernández-Castro, P., Ortiz, A., & Gorri, D. (2021). Exploring the potential application of Matrimid® and ZIFs-based
membranes for hydrogen recovery: A review. Polymers, 13(8), 1292. https://doi.org/10.3390/polym13081292
Hachula, B., Labus, K., & Tremel, W. (2010). Coordination properties of zinc imidazolate frameworks: Subtle tuning of the Zn–N bond. European Journal of Inorganic Chemistry, 2010(22), 3543–3548. https://doi.org/10.1002/ejic.201000374
Hosseini, S. E., & Fadaei, R. (2021). Hydrogen production technologies in Iran: A comprehensive review. Renewable and Sustainable Energy Reviews, 135, 110175. https://doi.org/10.1016/j.rser.2020.110175
Huang, X., Martín-Calvo, A., Mulder, M. J. J., van Acht, S. C. J., Gutiérrez-Sevillano, J. J., García-Navarro, J. C., & Calero, S. (2023). Effect of zeolitic imidazolate framework topology on the purification of hydrogen from coke oven gas. ACS Sustainable Chemistry & Engineering, 11(20), 8020–8034. https://doi.org/10.1021/acssuschemeng.3c01045
Johnson, R., & Brown, T. (2023). A comprehensive review of subject areas in energy research. Energy Reports, 9, 301–314. https://doi.org/10.1016/j.egyr.2022.10.124
Khan, M., Ali, A., & Bhatia, S. (2023). Recent advances in zeolitic imidazolate frameworks for hydrogen evolution. Chemistry of Materials, 35(12), 5015–5025. https://doi.org/10.1021/acs.chemmater.3c00679
Kim, H., Choi, S., & Park, J. (2022). Metal-organic frameworks for hydrogen storage and production: A review of recent advances. Journal of Materials Chemistry A, 10(10), 5584–5599. https://doi.org/10.1039/D1TA07980A
Kumar, S., & Singh, P. (2021). Hybrid ZIFs: A review of recent advances and future directions. Materials Today: Proceedings, 37, 882–889. https://doi.org/10.1016/j.matpr.2020.08.757
Li, H., Eddaoudi, M., O’Keeffe, M., & Yaghi, O. M. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276–279. https://doi.org/10.1038/46248
Li, J., Fan, X., Zhang, L., Liu, H., & Wang, Y. (2021). Zeolitic imidazolate frameworks for catalysis: Progress and perspectives. Chemical Reviews, 121(10), 7209–7256. https://doi.org/10.1021/acs.chemrev.0c01165
Liu, Y., Kravtsov, V. C., Larsen, R., & Eddaoudi, M. (2005). Molecular building blocks approach to the assembly of zeolitic imidazolate frameworks (ZIFs) with mixed-ligand and mixed-functionality. Chemistry of Materials, 17(18), 4570–4573. https://doi.org/10.1021/cm050554c
Nabgan, W., Nabgan, B., Jalil, A. A., Ikram, M., Hussain, I., Bahari, M. B., Tran, T. V., Alhassan, M., Owgi, A. H. K., Parashuram, L., & Nordin, A. H. (2024). A bibliometric examination and state-of-the-art overview of hydrogen generation from photoelectrochemical water splitting. International Journal of Hydrogen Energy, 52, 358–380. https://doi.org/10.1016/j.ijhydene.2023.12.001
Pan, Y., Liu, Y., Zeng, G., Zhao, L., Lai, Z., & Cheng, H. (2012). Zeolitic imidazolate framework-8 as an efficient catalyst for hydrogen production. Journal of Materials Chemistry, 22(20), 10241–10248. https://doi.org/10.1039/C2JM00025A
Pan, Y., Liu, Y., Zeng, G., Zhao, L., Zhang, W., Li, Z., & Xu, P. (2018). Metal-organic framework-derived mesoporous carbon for efficient electrocatalytic oxygen reduction. Advanced Functional Materials, 28(12), 1703280. https://doi.org/10.1002/adfm.201703280
Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186–10191. https://doi.org/10.1073/pnas.0602439103
Smith, J., Liu, X., & Zhang, Y. (2022). The role of chemistry in advancing hydrogen production technologies. Journal of Cleaner Production, 350, 131345. https://doi.org/10.1016/j.jclepro.2022.131345
Wang, B., Côté, A. P., Furukawa, H., O’Keeffe, M., & Yaghi, O. M. (2008). Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 453(7192), 207–211. https://doi.org/10.1038/nature06900
Wang, S., Shang, L., Li, L., Yu, Y., Chi, C., Wang, K., Zhang, J., Shi, R., Shen, H., Waterhouse, G. I., & Liu, H. (2016). Metal–organic-framework-derived mesoporous carbon nanospheres containing porphyrin-like metal centers for conformal phototherapy. Advanced Materials, 28(38), 8379–8387. https://doi.org/10.1002/adma.201602412
Wang, X., Zhang, Y., & Li, J. (2021). Advances in metal-organic frameworks for hydrogen production: A bibliometric analysis. Energy Reports, 7, 5221–5232. https://doi.org/10.1016/j.egyr.2021.08.153
Wang, Z., Jiang, L., Shao, Y., Wang, X., & Wu, H. (2019). Hybrid materials of zeolitic imidazolate frameworks for energy applications. Nature Energy, 4(9), 766–778. https://doi.org/10.1038/s41560-019-0441-9
Yao, X., Liu, J., & Zhang, Q. (2019). The role of ZIF-8 in sustainable energy applications. Journal of Materials Chemistry A, 7(22), 12850–12865. https://doi.org/10.1039/C9TA02738H
Yu, J., Balbuena, P. B., & Xu, Y. (2021). Methane adsorption in zeolitic imidazolate frameworks: A combined density functional theory and molecular dynamics study. Journal of Physical Chemistry C, 125(28), 15658–15667. https://doi.org/10.1021/acs.jpcc.1c03903
Zafari, A., Khosravi, M., & Shokri, A. (2023). Advances in zeolitic imidazolate frameworks for hydrogen evolution reaction. International Journal of Hydrogen Energy, 48(15), 5123–5135. https://doi.org/10.1016/j.ijhydene.2023.02.058
Zhang, X., & Chen, Y. (2020). Recent developments in zeolitic imidazolate frameworks for photocatalytic hydrogen production. Journal of Catalysis, 389, 1–10. https://doi.org/10.1016/j.jcat.2020.05.014
Zhang, X., Hu, Y., Liu, S., Chen, Z., & Wang, S. (2020). Doping strategies for ZIF-based electrocatalysts in hydrogen evolution reactions. Advanced Materials, 32(12), 1905730. https://doi.org/10.1002/adma.201905730
Zhang, Y., Li, Y., Wang, L., & Liu, S. (2022). Emerging trends in metal-organic frameworks for clean energy applications. Sustainable Energy & Fuels, 6(8), 2134–2150. https://doi.org/10.1039/D1SE01879G
Zhao, L., Wang, Y., & Zhang, H. (2023). Publication trends in zeolitic imidazolate frameworks for energy applications. Advanced Energy Materials, 13(4), 2200183. https://doi.org/10.1002/aenm.202200183
Zheng, B., Yang, Z., Zhang, W., Cai, X., Sun, C., & Zhang, G. (2016). Crystal growth of zeolitic imidazolate framework-8 nanocrystals with controlled size and form. Chemical Communications, 52(88), 13012–13015. https://doi.org/10.1039/C6CC06066H
Zhou, S., Li, Y., & Xu, Z. (2020). The role of zeolitic imidazolate frameworks in hydrogen evolution reaction: A review. Materials Today Energy, 18, 100537. https://doi.org/10.1016/j.mtener.2020.100537