Isolation, Characterization and Identification of Purple Non Sulfur Bacteria for Cadmium Removal from Aqueous Solution
DOI:
https://doi.org/10.11113/jomalisc.v3.78Keywords:
Purple Non-Sulfur Bacteria (PNSB), Rhodobacter sp, biosorption, cadmium removalAbstract
Cadmium (Cd) contamination in aquatic ecosystems poses serious environmental and health challenges due to its high toxicity and non-biodegradable nature. Conventional methods for Cd removal are often expensive and environmentally unsustainable, highlighting the need for alternative bioremediation approaches. Purple Non-Sulfur Bacteria (PNSB) have shown potential in heavy metal biosorption, but their application in Cd removal requires further exploration.This study is focused on the isolation, characterization and identification of purple non sulfur bacteria (PNSB) isolated from Kim Kim River, Pasir Gudang, Johor and its ability in removal of Cadmium from aqueous solution. PNSB was isolated and identifies based on morphological, pigment analysis and 16S rRNA approaches. Rhodobacter sp. was isolated and identified and was then studied for its ability to remove Cd in different environmental conditions such as various temperature, initial Cd solution pH and microbial growth conditions. The results showed that the best condition for Cd biosorption by Rhodobacter sp. was at 25°C, initial cadmium pH of 5.5 and facultative light incubation condition with 37.77% removal of Cd from aqueous solution. In conclusion, Rhodobacter s sp. isolated from Kim Kim River has the potential to remove cadmium from aqueous solution.
References
Achenbach, L. A., Carey, J., & Madigan, M. T. (2001). Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Applied and Environmental Microbiology, 67(7), 2922–2926. https://doi.org/10.1128/AEM.67.7.2922-2926.2001
Afroz, R., Banna, H., Masud, M. M., Akhtar, R., & Yahaya, S. R. (2016). Household’s perception of water pollution and its economic impact on human health in Malaysia. Desalination and Water Treatment, 57(1), 115–123. https://doi.org/10.1080/19443994.2015.1006822
Ahmed, M. K., Baki, M. A., Islam, M. S., ... & Hossain, M. M. (2015). Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh. Environmental Science and Pollution Research, 22, 15880–15890. https://doi.org/10.1007/s11356-015-4813-z
Ashokkumar, G. V. (2015). Diversity of purple non-sulfur bacteria (PNSB) from shrimp ponds in Nagai coastal region, southeast coast of India. International Journal of Environmental Science and Technology, 12(3), 59–61.
Aryal, M., & Liakopoulou-Kyriakides, M. (2013). Binding mechanism and biosorption characteristics of Fe(III) by Pseudomonas sp. cells. Journal of Water Sustainability, 3(3), 117–131.
Bai, H. J., Zhang, Z. M., Yang, G. E., & Li, B. Z. (2008). Bioremediation of cadmium by growing Rhodobacter sphaeroides: Kinetic characteristic and mechanism studies. Bioresource Technology, 99(16), 7716–7722. https://doi.org/10.1016/j.biortech.2008.01.071
Buccolieri, A., Italiano, F., Atti, A. D., Buccolieri, G., Giotta, L., Agostiano, A., & Trotta, M. (2006). The bacterium Rhodobacter sphaeroides as heavy metal removal tool. Annali di Chimica, 96, 329–337. https://doi.org/10.1002/adic.200690034
Chen, J., Wei, J., Ma, C., Yang, Z., Li, Z., Yang, X., ... & Zhang, C. (2020). Photosynthetic bacteria-based technology is a potential alternative to meet sustainable wastewater treatment requirements? Environment International, 137, 105417. https://doi.org/10.1016/j.envint.2019.105417
Chen, Y., Yang, A., Meng, F., & Zhang, G. (2019). Additives for photosynthetic bacteria wastewater treatment: Latest developments and future prospects. Bioresource Technology Reports, 7, 100229. https://doi.org/10.1016/j.biteb.2019.100229
Cheng, S. (2003). Heavy metal pollution in China: Origin, pattern, and control. Environmental Science and Pollution Research, 10(3), 192–198. https://doi.org/10.1065/espr2002.11.141.1
Chojnacka, K. (2010). Biosorption and bioaccumulation—The prospects for practical applications. Environment International, 36(3), 299–307. https://doi.org/10.1016/j.envint.2009.12.001
Das, N., Vimala, R., & Karthika, P. (2008). Biosorption of heavy metals—An overview. Indian Journal of Environmental Research, 7(April), 159–169.
Del Socorro, M. M. L., Ladion, W. L. B., Mehid, J. B., & Teves, F. G. (2013). Purple nonsulfur bacteria (PNSB) isolated from aquatic sediments and rice paddy in Iligan City, Philippines. Journal of Multidisciplinary Studies, 1(1), 45–58. https://doi.org/10.7828/jmds.v1i1.394
Do, Y. S., Schmidt, T. M., Zahn, J. A., Boyd, E. S., De la Mora, A., & DiSpirito, A. A. (2003). Role of Rhodobacter sp. strain PS9, a purple non-sulfur photosynthetic bacterium isolated from an anaerobic swine waste lagoon, in odor remediation. Applied and Environmental Microbiology, 69(3), 1710–1720. https://doi.org/10.1128/AEM.69.3.1710-1720.2003
Duruibe, J. O., Ogwuegbu, M. O. C., & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112–118.
Feng, Y., Yu, Y., Wang, Y., & Lin, X. (2007). Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus. Current Microbiology, 55(5), 402–408. https://doi.org/10.1007/s00284-007-9007-6
Garrison, G. E., & Ader, O. L. (1966). Cadmium in drinking water. Archives of Environmental Health, 13(5), 551–553. https://doi.org/10.1080/00039896.1966.10664616
Ghosh, S., Dairkee, U. K., Chowdhury, R., & Bhattacharya, P. (2017). Hydrogen from food processing wastes via photofermentation using purple non-sulfur bacteria (PNSB) – A review. Energy Conversion and Management, 141, 299–314. https://doi.org/10.1016/j.enconman.2016.09.001
Gupta, S., & Kumar, A. (2019). Removal of nickel (II) from aqueous solution by biosorption on A. barbadensis Miller waste leaves powder. Applied Water Science, 9(4), 1–11. https://doi.org/10.1007/s13201-019-0973-1
Hiraishi, A., Nagao, N., Yonekawa, C., Umekage, S., Kikuchi, Y., Eki, T., & Hirose, Y. (2020). Distribution of phototrophic purple nonsulfur bacteria in massive blooms in coastal and wastewater ditch environments. Microorganisms, 8(2), 150. https://doi.org/10.3390/microorganisms8020150
Holst-Jensen, A. (2009). Testing for genetically modified organisms (GMOs): Past, present and future perspectives. Biotechnology Advances, 27(6), 1071–1082. https://doi.org/10.1016/j.biotechadv.2009.05.025
Huang, R., & Rofstad, E. K. (2017). Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget, 8(21), 35351–35367. https://doi.org/10.18632/oncotarget.10169
Hussein, H., Ibrahim, S. F., Kandeel, K., & Moawad, H. (2004). Biosorption of heavy metals from wastewater using Pseudomonas sp. Electronic Journal of Biotechnology, 7(1), 45–53. https://doi.org/10.2225/vol7-issue1-fulltext-2
Italiano, F., Buccolieri, A., Giotta, L., Agostiano, A., Valli, L., Milano, F., & Trotta, M. (2009). Response of the carotenoidless mutant Rhodobacter sphaeroides growing cells to cobalt and nickel exposure. International Biodeterioration & Biodegradation, 63(7), 948–957. https://doi.org/10.1016/j.ibiod.2009.05.001
Izu, K., Nakajima, F., Yamamoto, K., & Kurisu, F. (2001). Aeration conditions affecting growth of purple nonsulfur bacteria in an organic wastewater treatment process. Systematic and Applied Microbiology, 24(2), 294–302. https://doi.org/10.1078/0723-2020-00027
Juahir, H., Zain, S. M., Yusoff, M. K., Hanidza, T. I. T., Armi, A. S. M., Toriman, M. E., & Mokhtar, M. (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using environmetric techniques. Environmental Monitoring and Assessment, 173(1–4), 625–641. https://doi.org/10.1007/s10661-010-1411-x
Kantachote, D., Torpee, S., & Umsakul, K. (2005). The potential use of anoxygenic phototrophic bacteria for treating latex rubber sheet wastewater. Electronic Journal of Biotechnology, 8(3), 0–0. https://doi.org/10.2225/vol8-issue3-fulltext-6
Kujan, P., Votruba, J., & Kameník, V. (1995). Substrate dependent bioaccumulation of cadmium by growing yeast Candida utilis. Folia Microbiologica, 40(3), 288–292. https://doi.org/10.1007/BF02814210
Kubier, A., Wilkin, R. T., & Pichler, T. (2019). Cadmium in soils and groundwater: A review. Applied Geochemistry, 108, 1–16. https://doi.org/10.1016/j.apgeochem.2019.104388
Leão, R., Domingos, C., Figueiredo, A., Hamilton, R., Tabori, U., & Castelo-Branco, P. (2017). Cancer stem cells in prostate cancer: Implications for targeted therapy. Urologia Internationalis, 99(2), 125–136. https://doi.org/10.1159/000455160
Lestari, S., & Windyartini, D. S. (2020). Application of Sargassum cinereum and rhizobacteria as biosorbent Zn in batik wastewater. Journal of Hunan University (Natural Sciences), 47(11), 15–21.
Li, X., Peng, W., Jia, Y., Lu, L., & Fan, W. (2017). Removal of cadmium and zinc from contaminated wastewater using Rhodobacter sphaeroides. Water Science and Technology, 75(11), 2489–2498. https://doi.org/10.2166/wst.2016.608
Lu, H., Zhang, G., He, S., Zhao, R., & Zhu, D. (2021). Purple non-sulfur bacteria technology: A promising and potential approach for wastewater treatment and bioresources recovery. World Journal of Microbiology and Biotechnology, 37(6), 92. https://doi.org/10.1007/s11274-021-03133-z
Lu, H., Zhang, G., Wan, T., & Lu, Y. (2011). Influences of light and oxygen conditions on photosynthetic bacteria macromolecule degradation: Different metabolic pathways. Bioresource Technology, 102(20), 9503–9508. https://doi.org/10.1016/j.biortech.2011.07.114
Madigan, M. T., & Jung, D. O. (2009). An overview of purple bacteria: Systematics, physiology, and habitats. In The Purple Phototrophic Bacteria (pp. 1–15). Springer. https://doi.org/10.1007/978-1-4020-8815-5_1
Mirza, S. S., Qazi, J. I., Liang, Y., & Chen, S. (2019). Growth characteristics and photofermentative biohydrogen production potential of purple non-sulfur bacteria from sugarcane bagasse. Fuel, 255, 115805. https://doi.org/10.1016/j.fuel.2019.115805
Mohamed Fahmy Gad El-Rab, S., Abdel-Fattah Shoreit, A., & Fukumori, Y. (2006). Effects of cadmium stress on growth, morphology, and protein expression in Rhodobacter capsulatus B10. Bioscience, Biotechnology and Biochemistry, 70(10), 2394–2402. https://doi.org/10.1271/bbb.60122
Msahir, H., Misnan, R., Cit, S., & Baba, I. (2020). Evaluation of water pollution and source identification in Merbok River, Kedah, Northwest Malaysia. Environmental Monitoring and Assessment, 192(4), 458–463.
Mukkata, K., Kantachote, D., Wittayaweerasak, B., Megharaj, M., & Naidu, R. (2019). The potential of mercury-resistant purple nonsulfur bacteria as effective biosorbents to remove mercury from contaminated areas. Biocatalysis and Agricultural Biotechnology, 17, 93–103. https://doi.org/10.1016/j.bcab.2018.11.008
Nath, K., & Das, D. (2009). Effect of light intensity and initial pH during hydrogen production by an integrated dark and photofermentation process. International Journal of Hydrogen Energy, 34(17), 7497–7501. https://doi.org/10.1016/j.ijhydene.2008.11.065
Nunkaew, T., Kantachote, D., Nitoda, T., & Kanzaki, H. (2015). Selection of salt-tolerant purple nonsulfur bacteria producing 5-aminolevulinic acid (ALA) and reducing methane emissions from microbial rice straw degradation. Applied Soil Ecology, 86, 113–120. https://doi.org/10.1016/j.apsoil.2014.10.005
Panwichian, S., & Kantachote, D. (2010). Factors affecting immobilization of heavy metals by purple nonsulfur bacteria isolated from contaminated shrimp ponds. World Journal of Microbiology and Biotechnology, 26(12), 2199–2210. https://doi.org/10.1007/s11274-010-0405-8
Panwichian, S., Kantachote, D., Wittayaweerasak, B., & Mallavarapu, M. (2011). Removal of heavy metals by exopolymeric substances produced by resistant purple nonsulfur bacteria isolated from contaminated shrimp ponds. Electronic Journal of Biotechnology, 14(4), 2. https://doi.org/10.2225/vol14-issue4-fulltext-2
Porwal, S., Kumar, T., Lal, S., Rani, A., Kumar, S., Cheema, S., ... & Kalia, V. C. (2008). Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresource Technology, 99(13), 5444–5451. https://doi.org/10.1016/j.biortech.2007.11.011
Ramchander, M., Pratap Rudra, M. P., Girisham, S., & Reddy, S. M. (2012). Biotechnological applications of purple non-sulfur phototrophic bacteria: A minireview. International Journal of Biotechnology, 1, 376–384.
Ratte, H. T. (1999). Bioaccumulation and toxicity of silver compounds: A review. Environmental Toxicology and Chemistry, 18(1), 89–108. https://doi.org/10.1897/1551-5028(1999)018<0089:BATOSC>2.3.CO;2
Ritchie, R. J. (2018). Measurement of chlorophylls a and b and bacteriochlorophyll a in organisms from hypereutrophic auxinic waters. Journal of Applied Phycology, 30(6), 3075–3087. https://doi.org/10.1007/s10811-018-1431-4
Ruíz, G., Valencia-González, H. A., León-Galicia, I., García-Villa, E., García-Carrancá, A., & Gariglio, P. (2018). Inhibition of RAD51 by siRNA and resveratrol sensitizes cancer stem cells derived from HeLa cell cultures to apoptosis. Stem Cells International, 2018, 2493869. https://doi.org/10.1155/2018/2493869
Panwichian, S. (2012). The use of selected purple nonsulfur bacteria to remove heavy metals and salts from sediment and water collected from contaminated areas to decrease their phytotoxicity. African Journal of Biotechnology, 11(29), 7434–7444. https://doi.org/10.5897/AJB11.3092
Sánchez, B., Champomier-Vergès, M. C., Stuer-Lauridsen, B., Ruas-Madiedo, P., Anglade, P., Baraige, F., ... & Margolles, A. (2007). Adaptation and response of Bifidobacterium animalis subsp. lactis to bile: A proteomic and physiological approach. Applied and Environmental Microbiology, 73(21), 6757–6767. https://doi.org/10.1128/AEM.00637-07
Seki, H., Suzuki, A., & Mitsueda, S. I. (1998). Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutrophus H16. Journal of Colloid and Interface Science, 197(2), 185–190. https://doi.org/10.1006/jcis.1997.5284
Shahzadi, I., Ahmed, R., Hassan, A., & Shah, M. M. (2010). Optimization of DNA extraction from seeds and fresh leaf tissues of wild marigold (Tagetes minuta) for polymerase chain reaction analysis. Genetics and Molecular Research, 9(1), 386–393. https://doi.org/10.4238/vol9-1gmr747
Singh, V. K., Saini, A., & Chandra, R. (2017). The implications and future perspectives of nanomedicine for cancer stem cell targeted therapies. Frontiers in Molecular Biosciences, 4, 52. https://doi.org/10.3389/fmolb.2017.00052
Smieljan, A., Wilkinson, K. J., & Rossier, C. (2003). Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum. Environmental Science and Technology, 37(4), 701–706. https://doi.org/10.1021/es025901h
Sojka, G. A., Freeze, H. H., & Gest, H. (1970). Quantitative estimation of bacteriochlorophyll in situ. Archives of Biochemistry and Biophysics, 136(2), 578–580. https://doi.org/10.1016/0003-9861(70)90231-6
Tang, K. Y., Du, S. L., Wang, Q. L., Zhang, Y. F., & Song, H. Y. (2020). Traditional Chinese medicine targeting cancer stem cells as an alternative treatment for hepatocellular carcinoma. Journal of Integrative Medicine, 18(3), 196–202. https://doi.org/10.1016/j.joim.2020.02.002
Teng, D., Zhang, B., Xu, G., Wang, B., Mao, K., Wang, J., ... & Zhang, H. (2020). Efficient removal of Cd(II) from aqueous solution by pinecone biochar: Sorption performance and governing mechanisms. Environmental Pollution, 265, 115001. https://doi.org/10.1016/j.envpol.2020.115001
Trapmann, S., & Emons, H. (2005). Reliable GMO analysis. Analytical and Bioanalytical Chemistry, 381(1), 72–74. https://doi.org/10.1007/s00216-004-2901-x
Watanabe, M., Kawahara, K., Sasaki, K., & Noparatnaraporn, N. (2003). Biosorption of cadmium ions using a photosynthetic bacterium, Rhodobacter sphaeroides S and a marine photosynthetic bacterium, Rhodovulum sp., and their biosorption kinetics. Journal of Bioscience and Bioengineering, 95(4), 374–378. https://doi.org/10.1263/jbb.95.374
Xu, J., Feng, Y., Wang, Y., & Lin, X. (2013). Characteristics of purple nonsulfur bacteria grown under Stevia residue extractions. Letters in Applied Microbiology, 57(5), 420–426. https://doi.org/10.1111/lam.12129
Sakpirom, J., Kantachote, D., Siripattanakul-Ratpukdi, S., McEvoy, J., & Khan, E. (2019). Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110. Chemosphere, 223, 455–464. https://doi.org/10.1016/j.chemosphere.2019.02.051