Eco-Friendly Fabrication of AgNP-Kaolinite Composite Using Persicaria odorata and Its Efficacy as Antibacterial Agent

Authors

  • Imran Qashfi Ismail Department of Bioscience, Faculty of Science. Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Assoc. Prof. Ts. ChM. Dr. Nik Ahmad Nizam Nik Malek Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia & Centre for Sustainable Nanomaterials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
  • Muhammad Hariz Asraf Asraf Life Resources, Cubex03, Innovation & Commercialisation Centre, Industry Centre, UTM Technovation Park, 81300 Skudai, Johor, Malaysia
  • Juan Matmin Centre for Sustainable Nanomaterials, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia & Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jomalisc.v4.93

Keywords:

Silver nanoparticles, Kaolinite composite, Green synthesis, Antibacterial activity, Persicaria odorata extract

Abstract

This study presents the green synthesis of silver nanoparticle-incorporated kaolinite (K-AgNP-Kaol) using Persicaria odorata leaf extract as a natural reducing and capping agent. The biosynthesis was optimized by adjusting extract volume and reaction temperature, with optimal AgNP formation achieved at 0.6 mL of extract and 80°C, as indicated by a surface plasmon resonance (SPR) peak at 431 nm. Structural and morphological characterizations were conducted using Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM), and Energy Dispersive X-ray Spectroscopy (EDX), confirming the successful incorporation of AgNPs into the kaolinite matrix without compromising its structural integrity. Antibacterial activity was evaluated against Escherichia coli (Gram-negative), Staphylococcus aureus, and Cutibacterium acnes (both Gram-positive) through disc diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays. The K-AgNP-Kaol composite exhibited inhibitory effects against all tested strains, with enhanced efficacy in deionized water compared to saline, likely due to reduced silver ions in the solution because of silver chloride (AgCl) formation in the saline solution. These findings highlight K-AgNP-Kaol as a promising, eco-friendly antibacterial material suitable for broad-spectrum applications.

References

Agustina, T. E., Handayani, W., & Imawan, C. (2021). The UV-VIS spectrum analysis from silver nanoparticles synthesized using Diospyros maritima Blume. leaves extract. Advances in Biological Sciences Research, 18, 411–419. https://doi.org/10.2991/absr.k.210621.070

Asraf, M. H., Malek, N. A. N. N., Radzi, M. R. M., & Susanto, H. (2024). Biosynthesized Persicaria odorata–silver nanoparticles supported zeolite Y as biocompatible antibacterial agent against Cutibacterium acnes. Particuology, 93, 1–10. https://doi.org/10.1016/j.partic.2024.05.015

Asraf, M. H., Sani, N. S., Williams, C. D., Jemon, K., & Malek, N. A. N. N. (2022). In situ biosynthesized silver nanoparticle-incorporated synthesized zeolite A using Orthosiphon aristatus extract for in vitro antibacterial wound healing. Particuology, 67, 27–34. https://doi.org/10.1016/j.partic.2021.09.007

Chi, M. (1999). Cation exchange capacity of kaolinite. Clays and Clay Minerals, 47(2), 174–180. https://doi.org/10.1346/CCMN.1999.0470207

Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1831. https://doi.org/10.3389/fmicb.2016.01831

Din, S. M., Malek, N. A. N. N., Shamsuddin, M., Matmin, J., Hadi, A. A., & Asraf, M. H. (2022). Antibacterial silver nanoparticles using different organs of Ficus deltoidea Jack var. Kunstleri (King) Corner. Biocatalysis and Agricultural Biotechnology, 44, 102473. https://doi.org/10.1016/j.bcab.2022.102473

Dutta, P., & Wang, B. (2019). Zeolite-supported silver as antimicrobial agents. Coordination Chemistry Reviews, 383, 1–29. https://doi.org/10.1016/j.ccr.2018.12.014

Elemike, E. E., Onwudiwe, D. C., & Mkhize, Z. (2016). Eco-friendly synthesis of AgNPs using Verbascum thapsus extract and its photocatalytic activity. Materials Letters, 185, 452–455. https://doi.org/10.1016/j.matlet.2016.09.026

Ijaz, I., Gilani, E., Nazir, A., & Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3), 223–245. https://doi.org/10.1080/17518253.2020.1802517

Isah, M., Asraf, M. H., Malek, N. A. N. N., Jemon, K., Sani, N. S., Muhammad, M. S., Wahab, M. F. A., & Saidin, M. A. R. (2020). Preparation and characterization of chlorhexidine modified zinc-kaolinite and its antibacterial activity against bacteria isolated from water vending machine. Journal of Environmental Chemical Engineering, 8(2), 103545. https://doi.org/10.1016/j.jece.2019.103545

Isah, M., Malek, N. A. N. N., Susanto, H., Asraf, M. H., & Aliero, A. S. (2025). Preparation, characterization, and antibacterial activity of Moringa oleifera–silver nanoparticles–kaolinite nanocomposite. Applied Clay Science, 269, 107761. https://doi.org/10.1016/j.clay.2025.107761

Li, X., Xu, H., Chen, Z.-S., & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011, Article ID 270974. https://doi.org/10.1155/2011/270974

Lubis, F. A., Malek, N. A. N. N., Sani, N. S., & Jemon, K. (2022). Biogenic synthesis of silver nanoparticles using Persicaria odorata leaf extract: Antibacterial, cytocompatibility, and in vitro wound healing evaluation. Particuology, 70, 10–19. https://doi.org/10.1016/j.partic.2022.01.001

Ridzuan, P. M., Hairul Aini, H., Norazian A. Shah, M. H., Roesnita, & Aminah, K. S. (2013). Antibacterial and antifungal properties of Persicaria odorata leaf against pathogenic bacteria and fungi. The Open Conference Proceedings Journal, 4(1), 71–75. https://benthamopen.com/ABSTRACT/TOPROCJ-4-2-71

Stanković, M., Kljun, J., Stevanović, N. L., Lazić, J., Bogojević, S. S., Vojnović, S., Zlatar, M., Nikodinović-Runić, J., Turel, I., Djuran, M. I., & Glišić, B. Đ. (2024). Silver(I) complexes containing antifungal azoles: Significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion. Dalton Transactions, 53(5), 2218–2230. https://doi.org/10.1039/D3DT03010E

Tan, D., Yuan, P., Annabi-Bergaya, F., Dong, F., Liu, D., & He, H. (2015). A comparative study of tubular halloysite and platy kaolinite as carriers for the loading and release of the herbicide amitrole. Applied Clay Science, 114, 190–196. https://doi.org/10.1016/j.clay.2015.05.024

Vila Domínguez, A., Ayerbe Algaba, R., Miró Canturri, A., Rodríguez Villodres, Á., & Smani, Y. (2020). Antibacterial activity of colloidal silver against Gram-negative and Gram-positive bacteria. Antibiotics, 9(1), 36. https://doi.org/10.3390/antibiotics9010036

Wang, J., Fu, L., & Yang, H. (2024). Structural modulation of kaolinite nanoclay via DFT and molecular dynamics simulations: A review. Applied Clay Science, 258, 107473. https://doi.org/10.1016/j.clay.2024.107473

Wang, W., Yu, Z., Lin, M., & Mustapha, A. (2023). Toxicity of silver nanoparticle-incorporated bacterial nanocellulose to human cells and intestinal bacteria. International Journal of Biological Macromolecules, 241, 124705. https://doi.org/10.1016/j.ijbiomac.2023.124705

Downloads

Published

2025-05-31

How to Cite

Ismail, I. Q., Assoc. Prof. Ts. ChM. Dr. Nik Ahmad Nizam Nik Malek, Muhammad Hariz Asraf, & Juan Matmin. (2025). Eco-Friendly Fabrication of AgNP-Kaolinite Composite Using Persicaria odorata and Its Efficacy as Antibacterial Agent. Journal of Materials in Life Sciences (JOMALISC), 4(1), 69–78. https://doi.org/10.11113/jomalisc.v4.93

Issue

Section

Articles