Vermicomposting for Degradation of Cotton using African Night Crawler Worm

Authors

  • Ahmad Fakhri Hakim Nor Radi Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
  • Chee Loong Teo Agri Season Sdn Bhd, 81900 Kota Tinggi, Johor, Malaysia
  • Zarita Zakaria Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
  • Nor Azimah Mohd Zain Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.

DOI:

https://doi.org/10.11113/jomalisc.v4.97

Keywords:

Vermicomposting, African Night Crawler Worm (ANC), Cotton degradation, Waste management

Abstract

The fashion industry has driven global economic growth and cultural change for decades. In 2013, textile production reached 92.3 million tonnes, with fashion waste predicted to hit 148 million tonnes by 2030. Vermicomposting offers a promising solution for organic waste. This study evaluates the effectiveness of African Night Crawler Worm (ANC) in vermicomposting cotton under varying conditions. It assesses the physicochemical properties of the resulting vermicompost and vermitea, focusing on nutrients like nitrogen (N), phosphorus (P), potassium (K), glucose, and the carbon-to-nitrogen ratio. The study compares degraded cotton structure using Field Emission Scanning Electron Microscope (FeSEM) analysis. Six treatments manipulating ANC amount, moisture content, and composting duration were tested. The cotton degraded successfully, with higher ANC amounts, 60-80% moisture, and 90-day composting yielding the best results. Nutrient concentrations in vermicompost increased significantly, with vermitea glucose at 9.1260 mg/mL. The C/N ratio initially around 22.7:1.8, increased to 23.6:1.9 by day 60, then dropped to 19:1 by day 90. FeSEM analysis showed significant structural changes in cotton post-vermicomposting. These findings highlight ANC vermicomposting's potential for efficient cotton degradation and nutrient enrichment, supporting sustainable waste management.

References

Adhikary, S. (2012). Vermicompost, the story of organic gold: A review. Agricultural Sciences, 03(07), 905–917. https://doi.org/10.4236/as.2012.37110

Algin, H. M., & Turgut, P. (2008). Cotton and limestone powder wastes as brick material. Construction and Building Materials, 22(6), 1074–1080. https://doi.org/10.1016/j.conbuildmat.2007.03.006

Ali, U., Sajid, N., Khalid, A., Riaz, L., Rabbani, M. M., Syed, J. H., & Malik, R. N. (2015). A review on vermicomposting of organic wastes. In Environmental Progress and Sustainable Energy (Vol. 34, Issue 4, pp. 1050–1062). John Wiley and Sons Inc. https://doi.org/10.1002/ep.12100

Azis, F. A., Choo, M., Suhaimi, H., & Abas, P. E. (2023). The Effect of Initial Carbon to Nitrogen Ratio on Kitchen Waste Composting Maturity. Sustainability 2023, Vol. 15, Page 6191, 15(7), 6191. https://doi.org/10.3390/SU15076191

Blakemore Vermecology, R. J. (2015). Eco-taxonomic profile of an iconic vermicomposter-the “African Nightcrawler” earthworm, Eudrilus eugeniae (Kinberg, 1867). In African Invertebrates (Vol. 56, Issue 3). http://africaninvertebrates.orgurn:lsid:zoobank.org:pub:CBAD704B-64F6-421B-BC71-74DF4620DB4E

Chen, X., Xi, K., Yang, Z., Lu, J., Zhang, Q., Wang, B., Wang, K., & Shi, J. (2023). Long-Term Increases in Continuous Cotton Yield and Soil Fertility following the Application of Cotton Straw and Organic Manure. Agronomy, 13(8). https://doi.org/10.3390/agronomy13082133

Chiarelotto, M., Restrepo, J. C. P. S., Lorin, H. E. F., & Damaceno, F. M. (2021). Composting organic waste from the broiler production chain: A perspective for the circular economy. In Journal of Cleaner Production (Vol. 329). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2021.129717

Choundry, M., Bijarnia, A., Kumawat, R., & Choundry, M. S. (2022). VERMICOMPOS : ROLE OF IMPROVING SOIL HEALTH AND QUALITY PRODUCTION.

Colombi, B. L., De Cássia Siqueira Curto Valle, R., Borges Valle, J. A., & Andreaus, J. (2021). Advances in sustainable enzymatic scouring of cotton textiles: Evaluation of different post-treatments to improve fabric wettability. Cleaner Engineering and Technology, 4. https://doi.org/10.1016/j.clet.2021.100160

Das, A., Layek, J., Singh Yadav, G., Babu, S., & Das, S. (2019). VERMICOMPOSTING FOR EFFICIENT RECYCLING OF BIOMASS FOR ORGANIC CROP PRODUCTION IN NORTH EAST INDIA. In Inno. Farm (Vol. 4, Issue 1). www.innovativefarming.in

Dimawarnita, F., Faramitha, Y., Siswanto, & Widiastuti, H. (2023). Impact of Aeration on Oil Palm Empty Fruit Bunches Decomposition. Jurnal Teknologi Industri Pertanian, 138–147. https://doi.org/10.24961/j.tek.ind.pert.2023.33.2.138

Domínguez, J. (2023). State-of-the-Art and New Perspectives on Vermicomposting Research: 18 Years of Progress. 27–44. https://doi.org/10.1007/978-981-19-8080-0_2

Henault-Ethier, L. (2007). Vermicomposting: from microbial and earthworm induced effects in bacterial sanitation to the chemistry of biodegradation under batch or continuous operation.

Kalbasi, A., Mukhtar, S., Hawkins, S. E., & Auvermann, B. W. (2005). Carcass Composting for Management of Farm Mortalities: A Review. In Compost Science & Utilization (Vol. 13, Issue 3).

Khobragade, B., & More, S. (2016). Re-Establishing Microbial Role in Degradation of Organic Substrates: Population Dynamics of Starch-Hydrolysing, Cellulose-Degrading and Phosphate-Solubilising Bacteria from the Gut of Eudrilus Eugeniae (Kinberg). International Journal of Research Studies in Biosciences, 4(7). https://doi.org/10.20431/2349-0365.0407003

Lacap, M. P., & Dantis, M. C. (2020). Vermicomposting Potential of Eudrilus eugeniae and Its Biological and Chemical Properties. www.sajst.orgwww.sajst.org

Masrie, M., Syamim Aizuddin Rosman, M., Sam, R., Janin, Z., & Alam, S. (2017). Detection of Nitrogen, Phosphorus and Potassium (NPK) nutrients of soil using Optical Transducer.

Matejovic, I. (1997). Determination of carbon and nitrogen in samples of various soils by the dry combustion. Communications in Soil Science and Plant Analysis, 28(17–18), 1499–1511. https://doi.org/10.1080/00103629709369892

Mehta, N., & Karnwal, A. (2012). Solid waste management with the help of vermicomposting and its applications in crop improvement. Journal of Biology and Earth Sciences, 201(3). http://www.journals.tmkarpinski.com/index.php/jbesorhttp://jbes.strefa.pl

Misra, R. V, Roy, R. N., & Hiaroka, H. (2003). On-Farm Composting Methods.

Paul, S., Goswami, L., Pegu, R., & Sundar Bhattacharya, S. (2020). Vermiremediation of cotton textile sludge by Eudrilus eugeniae: Insight into metal budgeting, chromium speciation, and humic substance interactions. Bioresource Technology, 314, 123753. https://doi.org/10.1016/J.BIORTECH.2020.123753

Punde, B., Vallabhbhai, S., Punde, B. D., & Ganorkar, R. A. (2021). Vermicompoting-Recycling Waste into Valueable Organic Fertilizer. Article in International Journal of Engineering Research and Applications, 2, 2342–2347. https://www.researchgate.net/publication/357017530

Pundee, K., Akeprathumchai, S., Tripetchkul, S., & Salaipeth, L. (2023). Unveiling the microbial dynamics in vermicomposting with coir pith as earthworm substrate. Heliyon, 9(12). https://doi.org/10.1016/j.heliyon.2023.e22945

Raza, S. T., Tang, J. L., Ali, Z., Yao, Z., Bah, H., Iqbal, H., & Ren, X. (2021). Ammonia Volatilization and Greenhouse Gases Emissions during Vermicomposting with Animal Manures and Biochar to Enhance Sustainability. Public Health, 18, 178. https://doi.org/10.3390/ijerph

Sari, S. V., Qayim, I., & Hilwan, I. (2016). Litter Decomposition Rate of Karst Ecosystem at Gunung Cibodas, Ciampea Bogor Indonesia. Journal of Tropical Life Science, 6(2), 107–112. https://doi.org/10.11594/jtls.06.02.08

Sinha, R. K., Herat, S., Agarwal, S., Asadi, R., & Carretero, E. (2002). Vermiculture and waste management: study of action of earthworms Elsinia foetida, Eudrilus euginae and Perionyx excavatus on biodegradation of some community wastes in India and Australia. In The Environmentalist (Vol. 22).

Singh, J. (2018). Role of Earthworm in Sustainable Agriculture. In Sustainable Food Systems from Agriculture to Industry: Improving Production and Processing (pp. 83–122). Elsevier. https://doi.org/10.1016/B978-0-12-811935-8.00003-2

Singh, V., Wyatt, J., Zoungrana, A., & Yuan, Q. (2022). Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source. Recycling, 7(1). https://doi.org/10.3390/recycling7010010

Tania, I. S., Ali, M., & Azam, M. S. (2021). Mussel-Inspired Deposition of Ag Nanoparticles on Dopamine-Modified Cotton Fabric and Analysis of its Functional, Mechanical and Dyeing Properties. Journal of Inorganic and Organometallic Polymers and Materials, 31(10), 4065–4076. https://doi.org/10.1007/s10904-021-02034-w

Wood, T. M., & Bhat, M. K. (1988). Methods for Measuring Cellulase Activities.

Zakarya, I. A., Khalib, S. N. B., & Mohd Ramzi, N. (2018). Effect of pH, temperature and moisture content during composting of rice straw burning at different temperature with food waste and effective microorganisms. E3S Web of Conferences, 34. https://doi.org/10.1051/e3sconf/20183402019

Zhou, Y., Xiao, R., Klammsteiner, T., Kong, X., Yan, B., Mihai, F. C., Liu, T., Zhang, Z., & Kumar Awasthi, M. (2022). Recent trends and advances in composting and vermicomposting technologies: A review. In Bioresource Technology (Vol. 360). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2022.127591

Downloads

Published

2025-11-30

How to Cite

Nor Radi, A. F. H., Teo, C. L., Zakaria, Z., & Zain, N. A. M. (2025). Vermicomposting for Degradation of Cotton using African Night Crawler Worm. Journal of Materials in Life Sciences , 4(2), 10–21. https://doi.org/10.11113/jomalisc.v4.97

Issue

Section

Articles