A Study on Multiple Antibiotic Resistance (MAR) and Biofilm Eradication of Vibrio cholerae in Shrimps
DOI:
https://doi.org/10.11113/jomalisc.v4.99Keywords:
antimicrobial activity, shrimps, AST, MAR Index, MBEC, chloramphenicolAbstract
Antimicrobial resistance (AMR) poses a significant global health security threat. One factor that exacerbates this issue is the formation of bacterial biofilms, which can increase the Multiple Antibiotic Resistance (MAR) of bacteria. Biofilms are particularly challenging to control due to their resistance to both chemical and physical stressors, including antibiotic therapy. This study focused on investigating the MAR in relation to the eradication of Vibrio cholerae biofilms. The bacteria were obtained from shrimp specimens collected during a recent outbreak in Limbang, Sarawak. Antibiotic Susceptibility Tests (ASTs) were conducted on sixteen V. cholerae isolates from environmental and clinical samples (shrimps). The results revealed six distinct antimicrobial resistance profiles, with MAR indices ranging from 0.10 to 0.38. Notably, the isolates VC006 and VC026 exhibited the highest MAR index of 0.38. A MAR index greater than 0.2 is indicative of contamination from high-risk sources and suggests a high probability of multi-drug resistance. The antibiotic chloramphenicol was selected as the agent for determining the Minimal Biofilm Eradication Concentration (MBEC) due to its known efficacy in quantifying the zone of inhibition. The results showed that concentrations ranging from 3.125 mg/mL to 25 mg/mL eradicated about 50% of V. cholerae biofilm formation (MBEC50), while higher concentrations of 50 mg/mL and 100 mg/mL achieved 90% eradication (MBEC90). In conclusion, the findings suggest that chloramphenicol is a highly effective antimicrobial therapy against multi-drug resistant and biofilm-forming strains of V. cholerae. This study underscores the importance of understanding and addressing MAR in the fight against AMR.
References
Rijal, N., Acharya, J., Adhikari, S., Shakya, B., Kansakar, P., & Rajbhandari, P. (2019). Changing epidemiology and antimicrobial resistance in Vibrio cholerae: AMR surveillance findings (2006–2016) from Nepal. BMC Infectious Diseases, 19, 801. https://doi.org/10.1186/s12879-019-4450-z
Miwanda, B., Moore, S., Muyembe, J., Nguefack-Tsague, G., Kabangwa, I. C., Ndjakani, D. Y., Mutreja, A., Thomson, N., Thefenne, H., Garnotel, E., Tshapenda, G., Kakongo, D. K., Kalambayi, G., & Piarroux, R. (2015). Antimicrobial drug resistance of Vibrio cholerae, Democratic Republic of the Congo. Emerging Infectious Diseases, 21(5), 847–851. https://doi.org/10.3201/eid2105.141393
Ukaji, D. C., Kemajou, T. S., Ajugwo, A. O., Ezeiruaku, F. C., & Eze, E. M. (2015). Antibiotic susceptibility patterns of Vibrio cholerae O1 isolated during cholera outbreak in Uzebba (Edo State). Open Science Journal of Bioscience and Bioengineering, 2(3), 33–36. (DOI not provided)
Nillian, E., Rukayadi, Y., & Radu, S. (2016). Biofilm of antibiotics-resistant Salmonella Typhimurium and Salmonella Enteritidis against detergents. Transactions on Science and Technology, 3(2), 319–327. (DOI not provided)
Khan, W. A., Saha, D., Ahmed, S., Salam, M. A., & Bennish, M. L. (2015). Efficacy of ciprofloxacin for treatment of cholera associated with diminished susceptibility to ciprofloxacin in Vibrio cholerae O1. PLoS ONE, 10(8), e0134921. https://doi.org/10.1371/journal.pone.0134921
Čabarkapa, I., Čolović, R., Đuragić, O., Popović, S., Kokić, B., Milanov, D., & Pezo, L. (2019). Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling, 35(3), 361–375. https://doi.org/10.1080/08927014.2019.1604544
Nadell, C. D., Drescher, K., Wingreen, N. S., & Bassler, B. L. (2015). Extracellular matrix structure governs invasion resistance in bacterial biofilms. ISME Journal, 9, 1700–1709. https://doi.org/10.1038/ismej.2014.246
Jiang, P., Li, J., Han, F., Duan, G., Lu, X., Gu, Y., & Yu, W. (2011). Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS ONE, 6(4), e18514. https://doi.org/10.1371/journal.pone.0018514
Dengo-Baloi, L. C., Sema-Baltazar, C. A., Manhique, L. V., Chitio, J. E., Inguane, D. L., & Langa, J. P. (2017). Antibiotics resistance in El Tor Vibrio cholerae O1 isolated during cholera outbreaks in Mozambique from 2012 to 2015. PLoS ONE, 12(8), e0181496. https://doi.org/10.1371/journal.pone.0181496
Igere, B. E., Okoh, A. I., & Nwodo, U. U. (2020). Antibiotic susceptibility testing (AST) reports: A basis for environmental/epidemiological surveillance and infection control amongst environmental Vibrio cholerae. International Journal of Environmental Research and Public Health, 17(16), 5685. https://doi.org/10.3390/ijerph17165685
Al-Dulaimi, M. M. K., Mutalib, S. A., Ghani, M. A., Zaini, N. A. M., & Ariffin, A. A. (2019). Multiple antibiotic resistance (MAR), plasmid profiles, and DNA polymorphisms among Vibrio vulnificus isolates. Antibiotics (Basel), 8(2), 68. https://doi.org/10.3390/antibiotics8020068
Nillian, E., Han, V., Lihan, S., & Bebey, G. (2019). Effects of Sarawak local salts and commercial sodium chloride on biofilm formation of Vibrio cholerae. Malaysian Journal of Microbiology, 15(6), 449–454. https://doi.org/10.21161/mjm.161819
Nayak, S. R., Nayak, A. K., Biswal, B. L., Jena, R. P., Samal, S. K., & Pal, B. B. (2020). Incidence of bacterial enteropathogens among diarrhea patients from tribal areas of Odisha. Japanese Journal of Infectious Diseases, 73, 263–267. https://doi.org/10.7883/yoken.JJID.2019.407
Paranjape, S. S., & Shashidhar, R. (2020). Glucose sensitizes the stationary and persistent population of Vibrio cholerae to ciprofloxacin. Archives of Microbiology, 202(2), 343–349. https://doi.org/10.1007/s00203-019-01756-2
Ja’afar, A. Z., Nillian, E., Bilung, L. M., Bebey, G., Zakaria, D., & Guda, B. P. (2021). Detection of cholera toxin (ctxA and ctxAB) genes in Vibrio cholerae isolated from clinical and environmental samples in Limbang, Sarawak by multiplex PCR. Malaysian Journal of Microbiology, 17(1), 1–8. https://doi.org/10.21161/mjm.190320
Blackstone, G. M., Nordstrom, J. L., Bowen, M. D., Meyer, R. F., Imbro, P., & DePaola, A. (2007). Use of a real-time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay. Journal of Microbiological Methods, 68, 254–259. https://doi.org/10.1016/j.mimet.2006.08.006
Blackstone, G. M., Nordstrom, J. L., Bowen, M. D., Meyer, R. F., Imbro, P., & DePaola, A. (2007). Use of a real-time PCR assay for detection of the ctxA gene of Vibrio cholerae in an environmental survey of Mobile Bay. Journal of Microbiological Methods, 68, 254–259. https://doi.org/10.1016/j.mimet.2006.08.006
Ceccarelli, D., Chen, A., Hasan, N. A., Rashed, S. M., Huq, A., & Colwell, R. R. (2015). Non-O1/non-O139 Vibrio cholerae carrying multiple virulence factors and V. cholerae O1 in the Chesapeake Bay, Maryland. Applied and Environmental Microbiology, 81(6), 1909–1918. https://doi.org/10.1128/AEM.03755-14
Shrestha, U. T., Adhikari, N., Maharjan, R., Banjara, M. R., Rijal, K. R., Basnyat, S. R., & Agrawal, V. P. (2015). Multidrug resistant Vibrio cholerae O1 from clinical and environmental samples in Kathmandu city. BMC Infectious Diseases, 15, 104. https://doi.org/10.1186/s12879-015-0831-8
Letchumanan, V., Yin, W. F., Lee, L. H., & Chan, K. G. (2015). Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Frontiers in Microbiology, 6, 33. https://doi.org/10.3389/fmicb.2015.00033
Dutta, I., Bhattacharya, S. K., Bhattacharya, M. K., Deb, M., Manna, A., Moitra, A. K., & Mukhopadhyay, G. B. (1996). Efficacy of norfloxacin and doxycycline for treatment of Vibrio cholerae O139 infection. Journal of Antimicrobial Chemotherapy, 37(3), 575–581. https://doi.org/10.1093/jac/37.3.575
Das, B., Verma, J., Kumar, P., Ghosh, A., & Ramamurthy, T. (2020). Antibiotic resistance in Vibrio cholerae: Understanding the ecology of resistance genes and mechanisms. Vaccine, 38(Suppl 1), A83–A92. https://doi.org/10.1016/j.vaccine.2019.06.030
Opintan, J. A., Will, R. C., Kuma, G. K., Osei, M., Akumwena, A., Boateng, G., ... Mutreja, A. (2021). Phylogenetic and antimicrobial drug resistance analysis of Vibrio cholerae O1 isolates from Ghana. Microbial Genomics, 7(10), 000668. https://doi.org/10.1099/mgen.0.000668
Igere, B. E., Okoh, A. I., & Nwodo, U. U. (2020). Antibiotic susceptibility testing (AST) reports: A basis for environmental/epidemiological surveillance and infection control amongst environmental Vibrio cholerae. International Journal of Environmental Research and Public Health, 17(16), 5685. https://doi.org/10.3390/ijerph17165685
Gwendelynne, B. T., Son, R., Nishibuchi, M., Raha, A. R., Suhaimi, N., Lesley, M., & Jurin, W. G. (2005). Characterization of Vibrio parahaemolyticus isolated from coastal seawater in Peninsular Malaysia. Southeast Asian Journal of Tropical Medicine and Public Health, 36(4), 940–945.
Elexson, N., Afsah-Hejri, L., Rukayadi, Y., Soopna, P., Lee, H. Y., Tuan Zainazor, T. C., ... Son, R. (2014). Effect of detergents as antibacterial agents on biofilm of antibiotics-resistant Vibrio parahaemolyticus isolates. Food Control, 35, 378–385. https://doi.org/10.1016/j.foodcont.2013.07.033
Nelly, D. P., Dwi, W. I., & Aliyah, S. S. (2020). Prevalence of bacterial infection in rectal swab culture of some prospective workers. Malaysian Journal of Medical and Health Sciences, 16(Suppl 16), 9–13.
Dengo-Baloi, L. C., Sema-Baltazar, C. A., Manhique, L. V., Chitio, J. E., Inguane, D. L., & Langa, J. P. (2017). Antibiotics resistance in El Tor Vibrio cholerae O1 isolated during cholera outbreaks in Mozambique from 2012 to 2015. PLoS ONE, 12(8), e0181496. https://doi.org/10.1371/journal.pone.0181496
Kart, D., Reçber, T., Nemutlu, E., & Sagiroglu, M. (2021). Sub-inhibitory concentrations of ciprofloxacin alone and in combination with plant-derived compounds against Pseudomonas aeruginosa biofilms and their effects on its metabolomic profile. Antibiotics (Basel), 10(4), 414. https://doi.org/10.3390/antibiotics10040414
Acosta, F., Montero, D., Izquierdo, M., & Galindo-Villegas, J. (2021). High-level biocidal products effectively eradicate pathogenic γ-proteobacteria biofilms from aquaculture facilities. Aquaculture, 532, 736004. https://doi.org/10.1016/j.aquaculture.2020.736004
Ginny, G., & Prasanna, P. (2021). Chloramphenicol. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK482309/
Rafaque, Z., Abid, N., Liaqat, N., Afridi, P., Siddique, S., Masood, S., Kanwal, S., & Dasti, J. I. (2020). In-vitro investigation of antibiotics efficacy against uropathogenic Escherichia coli biofilms and antibiotic-induced biofilm formation at sub-minimum inhibitory concentration of ciprofloxacin. Infection and Drug Resistance, 13, 2801–2810. https://doi.org/10.2147/IDR.S264212















